Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a7, author = {V. G. Zavodinsk{\cyru} and O. A. Gorkusha}, title = {On the precision increasing in calculation of potential for the systems of interactive atoms}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {101--110}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a7/} }
TY - JOUR AU - V. G. Zavodinskу AU - O. A. Gorkusha TI - On the precision increasing in calculation of potential for the systems of interactive atoms JO - Čebyševskij sbornik PY - 2018 SP - 101 EP - 110 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a7/ LA - ru ID - CHEB_2018_19_2_a7 ER -
V. G. Zavodinskу; O. A. Gorkusha. On the precision increasing in calculation of potential for the systems of interactive atoms. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 101-110. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a7/
[1] L. D. Landau, E. M. Lifshits, Quantum mechanics. Nonrelativistic theory, Fizmatgiz, M., 1963, 768 pp.
[2] W. Kohn, J. L. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140:4A (1965), A1133–A1138 | DOI | MR
[3] Zavodinsky V., Computer modeling of nanoparticles and nanosystems, Fizmatlit, M., 2013, 137 pp.
[4] Skollermo G., “A Fourier method for the Numerical Solution of Poisson Equation”, Mathematics of Computation, 29:131 (1975), 697–711 | DOI | MR | Zbl
[5] Chun-Min Chang, Yihan Shao, Jing Kong, “Ewald mesh method for quantum mechanical calculations”, J. Chem. Phys., 136:11 (2012), 114112, 5 pp. | DOI
[6] V. B. Bobrov, S. A. Trigger, “The problem of the universal density functional and the density matrix functional theory”, Journal of Experimental and Theoretical Physics, 116:4 (2013), 635–640 | DOI
[7] J. R. Chelikowsky, N. Troullier, Y. Saad, “Finite-difference-pseudopotential method: Electronic structure calculations without a basis”, Phys. Rev. Lett., 72:8 (1994), 1240–1243 | DOI
[8] L. Kleinman L., D. M. Bylander, “Efficacious Form for Model Pseudopotentials”, Phys. Rev. Lett., 48:20 (1982), 1425–1428 | DOI
[9] H. Cheng H., L. Greebgard, V. Rokhlin, “A Fast Adaptive Multipole Algorithm in Three Dimensions”, Journal of Computational Physics, 155:2 (1999), 468–498 | DOI | MR | Zbl
[10] J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method”, Phys. Rev. B Condensed Matter, 71:3 (2005), 035109, 11 pp. | DOI
[11] J. R. Chelikowsky, K. Wu, N. Troullier, Y. Saad, “Higher-order finite-difference pseudopotential method: An application to diatomic molecules”, Phys. Rev. B, 50:16 (1994), 11355–11364 | DOI
[12] A. D. Becke, “A multicenter numerical integration scheme for polyatomic molecules”, J. Chem. Phys., 88:4 (1988), 2547–2553 | DOI
[13] Kikuji Hirose, Tomoya Ono, Yoshitaka Fujimoto, Shigeru Tsukamoto, First-Principles Calculations in Real-Space Formalism, Imperial College Press, London, 2005, 2253 pp.
[14] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Wiley, New York, 2000, 696 pp. | MR | Zbl
[15] X. Gonze, R. Stumpf, M. Scheffler, “Analysis of separable potentials”, Phys. Rev. B, 44:16 (1991), 8503–8513 | DOI
[16] N. Troullier, J. L. Martins, “Efficient pseudopotentials for plane-wave calculations”, Phys. Rev., 43:3 (1991), 1993–2006 | DOI | MR
[17] A. Brandt, “Multi-level adaptive solutions to boundary-value problems”, Mathematics of Computation, 31:138 (1977), 333–390 | DOI | MR | Zbl
[18] Walter A. Harrison, Electronic Structure and the Properties of Solids, W. H. Freeman and Company, San Francisco, 1980, 680 pp. | MR
[19] Zavodinsky V., Quantum modeling of polyatomic systems without wave functions, LAP LAMBERT Academic Publishing RU, 2017, 56 pp.