On the doubling condition for non-negative positive definite functions on on the half-line with power weight
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 90-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Continuous non-negative positive definite functions satisfy the following property: \begin{equation} \int_{-R}^{R}f(x)\,dx\le C(R)\int_{-1}^{1}f(x)\,dx,\quad R\ge 1, \tag{*} \end{equation} where the smallest positive constant $C(R)$ does not depend on $f$. For $R=2$, this property is well known as the doubling condition at zero. These inequalities have applications in number theory. In the one-dimensional case, the inequality ($*$) was studied by B.F. Logan (1988), as well as recently by A. Efimov, M. Gaál, and Sz. Révész (2017). It has been proven that $2R-1\le C(R)\le 2R+1$ for $R=2,3,\ldots$, whence it follows that $C(R)\sim 2R$. The question of exact constants is still open. A multidimensional version of the inequality ($*$) for the Euclidean space $\mathbb{R}^{n}$ was investigated by D.V. Gorbachev and S.Yu. Tikhonov (2018). In particular, it was proved that for continuous positive definite functions $f\colon \mathbb{R}^{n}\to \mathbb{R}_{+}$ $$ \int_{|x|\le R}f(x)\,dx\le c_{n}R^{n}\int_{|x|\le 1}f(x)\,dx, $$ where $c_{n}\le 2^{n}n\ln n\,(1+o(1))(1+R^{-1})^{n}$ при $n\to \infty$. For radial functions, we obtain the one-dimensional weight inequality $$ \int_{0}^{R}f(x)x^{n-1}\,dx\le c_{n}R^{n}\int_{0}^{1}f(x)x^{n-1}\,dx,\quad n\in \mathbb{N}. $$ We study the following natural weight generalization of such inequalities: $$ \int_{0}^{R}f(x)x^{2\alpha+1}\,dx\le C_{\alpha}(R)\int_{0}^{1}f(x)x^{2\alpha+1}\,dx,\quad \alpha\ge -1/2, $$ where $f\colon \mathbb{R}_{+}\to \mathbb{R}_{+}$ is an even positive definite function with respect to the weight $x^{2\alpha+1}$. This concept has been introduced by B.M. Levitan (1951) and means that for arbitrary $x_{1},\ldots,x_{N}\in \mathbb{R}_{+}$ matrix $(T_{\alpha}^{x_i}f(x_j))_{i,j=1}^{N}$ is semidefinite. Here $T_{\alpha}^{t}$ is the Bessel–Gegenbauer generalized translation. Levitan proved an analogue of the classical Bochner theorem for such functions according to which $f$ has the nonnegative Hankel transform (in the measure sense). We prove that for every $\alpha\ge -1/2$ $$ c_{1}(\alpha)R^{2\alpha+2}\le C_{\alpha}(R)\le c_{2}(\alpha)R^{2\alpha+2},\quad R\ge 1. $$ The lower bound is trivially achieved on the function $f(x)=1$. To prove the upper bound we apply lower estimates of the sums $\sum_{k=1}^{m}a_{k}T^{x_{k}}\chi(x)$, where $\chi$ is the characteristic function of the segment $[0,1]$, and also we use properties of the Bessel convolution.
Keywords: positive definite function, doubling condition, Hankel transform, Bessel generalized translation.
@article{CHEB_2018_19_2_a6,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {On the doubling condition for non-negative positive definite functions on on the half-line with power weight},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {90--100},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - On the doubling condition for non-negative positive definite functions on on the half-line with power weight
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 90
EP  - 100
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/
LA  - ru
ID  - CHEB_2018_19_2_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T On the doubling condition for non-negative positive definite functions on on the half-line with power weight
%J Čebyševskij sbornik
%D 2018
%P 90-100
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/
%G ru
%F CHEB_2018_19_2_a6
D. V. Gorbachev; V. I. Ivanov. On the doubling condition for non-negative positive definite functions on on the half-line with power weight. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 90-100. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/

[1] G. Bateman, A. Erdélyi et al, Higher Transcendental Functions, v. II, McGraw Hill Book Company, New York, 1953 | MR

[2] M. Gaál, Sz. Gy. Révész, Integral comparisons of nonnegative positive definite functions on locally compact abelian groups, arXiv: 1803.06409 [math.FA]

[3] S. Ghobber, P. Jaming, “The Logvinenko–Sereda theorem for the Fourier–Bessel transform”, Integral Transforms and Special Functions, 24:6 (2013), 470–484 | DOI | MR | Zbl

[4] D. V. Gorbachev, “Certain inequalities for discrete, nonnengative, positive definite functions”, Izv. Tul. Gos. Univ. Est. nauki, 2015, no. 2, 5–12 (in Russian)

[5] D. V. Gorbachev, S. Yu. Tikhonov, “Doubling condition at the origin for non-negative positive definite functions”, Proc. Amer. Math. Soc., 2018 (to appear) , arXiv: 1612.08637 [math.CA] | MR

[6] D. V. Gorbachev, S. Yu. Tikhonov, “Wiener's problem for positive definite functions”, Math. Z., 289:3-4 (2018), 859–874 | DOI | MR | Zbl

[7] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx, 2018, 1–51 | DOI | MR

[8] A. Efimov, M. Gaál, Sz. Gy. Révész, “On integral estimates of nonnegative positive definite functions”, Bull. Aust. Math. Soc., 96:1 (2017), 117–125 | DOI | MR | Zbl

[9] B. M. Levitan, “Expansion in Fourier series and integrals with Bessel functions”, Uspekhi Mat. Nauk, 6:2 (1951), 102–143 (in Russian) | MR | Zbl

[10] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: Selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, Rhode Island, 1975 | DOI | MR | Zbl

[11] B. F. Logan, “An interference problem for exponentials”, Michigan Math. J., 35 (1988), 369–393 | DOI | MR | Zbl

[12] W. Rudin, Fourier analysis on groups, Interscience Publ., New York, 1962 | MR | Zbl

[13] H. S. Shapiro, “Majorant problems for Fourier coefficients”, Quart. J. Math. Oxford Ser. (2), 26 (1975), 9–18 | DOI | MR | Zbl

[14] Yu. N. Shteinikov, “On the set of joint representatives of two congruence Classes”, Proceedings of the Steklov Institute of Mathematics, 290:1 (2015), 189–196 | DOI | MR | Zbl