Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a6, author = {D. V. Gorbachev and V. I. Ivanov}, title = {On the doubling condition for non-negative positive definite functions on on the half-line with power weight}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {90--100}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/} }
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov TI - On the doubling condition for non-negative positive definite functions on on the half-line with power weight JO - Čebyševskij sbornik PY - 2018 SP - 90 EP - 100 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/ LA - ru ID - CHEB_2018_19_2_a6 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %T On the doubling condition for non-negative positive definite functions on on the half-line with power weight %J Čebyševskij sbornik %D 2018 %P 90-100 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/ %G ru %F CHEB_2018_19_2_a6
D. V. Gorbachev; V. I. Ivanov. On the doubling condition for non-negative positive definite functions on on the half-line with power weight. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 90-100. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a6/
[1] G. Bateman, A. Erdélyi et al, Higher Transcendental Functions, v. II, McGraw Hill Book Company, New York, 1953 | MR
[2] M. Gaál, Sz. Gy. Révész, Integral comparisons of nonnegative positive definite functions on locally compact abelian groups, arXiv: 1803.06409 [math.FA]
[3] S. Ghobber, P. Jaming, “The Logvinenko–Sereda theorem for the Fourier–Bessel transform”, Integral Transforms and Special Functions, 24:6 (2013), 470–484 | DOI | MR | Zbl
[4] D. V. Gorbachev, “Certain inequalities for discrete, nonnengative, positive definite functions”, Izv. Tul. Gos. Univ. Est. nauki, 2015, no. 2, 5–12 (in Russian)
[5] D. V. Gorbachev, S. Yu. Tikhonov, “Doubling condition at the origin for non-negative positive definite functions”, Proc. Amer. Math. Soc., 2018 (to appear) , arXiv: 1612.08637 [math.CA] | MR
[6] D. V. Gorbachev, S. Yu. Tikhonov, “Wiener's problem for positive definite functions”, Math. Z., 289:3-4 (2018), 859–874 | DOI | MR | Zbl
[7] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx, 2018, 1–51 | DOI | MR
[8] A. Efimov, M. Gaál, Sz. Gy. Révész, “On integral estimates of nonnegative positive definite functions”, Bull. Aust. Math. Soc., 96:1 (2017), 117–125 | DOI | MR | Zbl
[9] B. M. Levitan, “Expansion in Fourier series and integrals with Bessel functions”, Uspekhi Mat. Nauk, 6:2 (1951), 102–143 (in Russian) | MR | Zbl
[10] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: Selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, Rhode Island, 1975 | DOI | MR | Zbl
[11] B. F. Logan, “An interference problem for exponentials”, Michigan Math. J., 35 (1988), 369–393 | DOI | MR | Zbl
[12] W. Rudin, Fourier analysis on groups, Interscience Publ., New York, 1962 | MR | Zbl
[13] H. S. Shapiro, “Majorant problems for Fourier coefficients”, Quart. J. Math. Oxford Ser. (2), 26 (1975), 9–18 | DOI | MR | Zbl
[14] Yu. N. Shteinikov, “On the set of joint representatives of two congruence Classes”, Proceedings of the Steklov Institute of Mathematics, 290:1 (2015), 189–196 | DOI | MR | Zbl