On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 80-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $0$, we investigate the interrelation between the Nikolskii constant for trigonometric polynomials of order at most $n$ $$ \mathcal{C}(n,p)=\sup_{T_{n}\ne 0}\frac{\|T_{n}\|_{\infty}}{\|T_{n}\|_{p}} $$ and the Nikolskii constant for entire functions of exponential type at most $1$ $$ \mathcal{L}(p)=\sup_{f\ne 0}\frac{\|f\|_{\infty}}{\|f\|_{p}}. $$ Recently E. Levin and D. Lubinsky have proved that $$ \mathcal{C}(n,p)=\mathcal{L}(p)n^{1/p}(1+o(1)),\quad n\to \infty. $$ M. Ganzburg and S. Tikhonov have extend this result on the case of Nikolskii–Bernstein constants. We prove inequalities $$ n^{1/p}\mathcal{L}(p)\le \mathcal{C}(n,p)\le (n+\lceil p^{-1}\rceil)^{1/p}\mathcal{L}(p),\quad n\in \mathbb{Z}_{+},\quad 0\infty, $$ which improve the result of Levin and Lubinsky. The proof follows our old approach based on properties of the integral Fejer kernel. Using this approach we proved earlier estimates for $p=1$ $$ n\mathcal{L}(1)\le \mathcal{C}(n,1)\le (n+1)\mathcal{L}(1). $$ Using such inequalities, we can estimate the constant $\mathcal{L}(p)$ solving approximately $\mathcal{C}(n,p)$ for large $n$. To do this we use recent results of V. Arestov and M. Deikalova, who expressed the Nikolskii constant $\mathcal{C}(n,p)$ using the algebraic polynomial $\rho_{n}$ that deviates least from zero in the space $L^{p}$ on the segment $[-1,1]$ with the weight $(1-t)v(t)$, where $v(t)=(1-t^{2})^{-1/2}$ is the Chebyshev weight. As consequence, we refine estimates of the Nikolskii constant $\mathcal{L}(1)$ and find that $$ 1.0812\pi \mathcal{L}(1)1.082. $$ To compare previous estimates were $1.0812\pi \mathcal{L}(1)1.098$.
Keywords: trigonometric polynomial, entire function of exponential type, Nikolskii constant, Chebyshev weight.
@article{CHEB_2018_19_2_a5,
     author = {D. V. Gorbachev and I. A. Martyanov},
     title = {On interrelation of {Nikolskii} {Constants} for trigonometric polynomials and entire functions of exponential type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {80--89},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a5/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - I. A. Martyanov
TI  - On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 80
EP  - 89
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a5/
LA  - ru
ID  - CHEB_2018_19_2_a5
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A I. A. Martyanov
%T On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type
%J Čebyševskij sbornik
%D 2018
%P 80-89
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a5/
%G ru
%F CHEB_2018_19_2_a5
D. V. Gorbachev; I. A. Martyanov. On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 80-89. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a5/

[1] V. V. Arestov, “Inequality of different metrics for trigonometric polynomials”, Math. Notes, 27:4 (1980), 265–269 | DOI | MR | Zbl

[2] V. Arestov, M. Deikalova, “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI | MR | Zbl

[3] V. Arestov, M. Deikalova, “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI | MR | Zbl

[4] J. M. Ash, M. Ganzburg, “An Extremal Problem for Trigonometric Polynomials”, Proc. Am. Math. Soc., 127:1 (1999), 211–216 | DOI | MR | Zbl

[5] M. Ganzburg, S. Tikhonov, “On Sharp Constants in Bernstein–Nikolskii Inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[6] D. V. Gorbachev, “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2005, Suppl. 2, S117–S138 | MR | Zbl

[7] E. Levin, D. Lubinsky, “$L_p$ Chritoffel functions, $L_p$ universality, and Paley–Wiener spaces”, J. D'Analyse Math., 125 (2015), 243–283 | DOI | MR | Zbl

[8] E. Levin, D. Lubinsky, “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | DOI | MR | Zbl

[9] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton, N. J., 1971 | MR | Zbl