Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 67-79

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently Arestov, Babenko, Deikalova, and Horváth have established a series of interesting results correspondent to the sharp Nikolskii constant $\mathcal{L}_{\mathrm{even}}(\alpha,p)$ in the weighted inequality $$ \sup_{x\in [0,\infty)}|f(x)|\le \mathcal{L}_{\mathrm{even}}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(2\int_{0}^{\infty}|f(x)|^{p}x^{2\alpha+1}\,dx\biggr)^{1/p} $$ for the subspace $\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R}_{+},x^{2\alpha+1}\,dx)$ of even entire functions $f$ of exponential type at most $\sigma>0$, where $1\le p\infty$ and $\alpha\ge -1/2$. We prove that, for the same $\alpha$ and $p$ $$ \mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p), $$ where $\mathcal{L}(\alpha,p)$ is the sharp constant in the Nikolskii inequality $$ \sup_{x\in \mathbb{R}}|f(x)|\le \mathcal{L}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(\int_{\mathbb{R}}|f(x)|^{p}|x|^{2\alpha+1}\,dx\biggr)^{1/p} $$ for any (not necessary even) functions $f\in \mathcal{E}_{p,\alpha}^{\sigma}:=\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$. Also we give bounds of the normalized Nikolskii constant $$ \mathcal{L}^{*}(\alpha,p):= (2^{2\alpha+2}\Gamma(\alpha+1)\Gamma(\alpha+2))^{1/p}\mathcal{L}(\alpha,p), $$ which are as follows: $$ \mathcal{L}^{*}(\alpha,p)\le \lceil p/2\rceil^{\frac{2\alpha+2}{p}},\quad p\in (0,\infty), $$ and for fixed $p\in [1,\infty)$ $$ \mathcal{L}^{*}(\alpha,p)\ge (p/2)^{\frac{2\alpha+2}{p}\,(1+o(1))},\quad \alpha\to \infty. $$ The upper estimate is sharp if and only if $p=2$. In this case, $\mathcal{L}^{*}(\alpha,2)=1$ for each $\alpha\ge -1/2$. Our approach relies on the one-dimensional Dunkl harmonic analysis. To prove the identity $\mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p)$ we use the even positive Dunkl-type generalized translation operator $T^{t}$ such that is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant one and invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$. The proof of the upper estimate of the constant $\mathcal{L}^{*}(\alpha,p)$ is based on estimation of norms of the reproducing kernel for the subspace $\mathcal{E}_{p,\alpha}^{1}$ and the multiplicative inequality for the Nikolskii constant. To obtain the lower estimate we consider the normalized Bessel function $j_{\nu}\in \mathcal{E}_{p,\alpha}^{1}$ of order $\nu\sim (2\alpha+2)/p$.
Keywords: weighted Nikolskii inequality, sharp constant, entire function of exponential type, Dunkl transform, generalized translation operator, reproducing kernel, Bessel function.
@article{CHEB_2018_19_2_a4,
     author = {D. V. Gorbachev and N. N. Dobrovolsky},
     title = {Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovolsky
TI  - Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 67
EP  - 79
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/
LA  - ru
ID  - CHEB_2018_19_2_a4
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovolsky
%T Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
%J Čebyševskij sbornik
%D 2018
%P 67-79
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/
%G ru
%F CHEB_2018_19_2_a4
D. V. Gorbachev; N. N. Dobrovolsky. Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 67-79. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/