Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 67-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently Arestov, Babenko, Deikalova, and Horváth have established a series of interesting results correspondent to the sharp Nikolskii constant $\mathcal{L}_{\mathrm{even}}(\alpha,p)$ in the weighted inequality $$ \sup_{x\in [0,\infty)}|f(x)|\le \mathcal{L}_{\mathrm{even}}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(2\int_{0}^{\infty}|f(x)|^{p}x^{2\alpha+1}\,dx\biggr)^{1/p} $$ for the subspace $\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R}_{+},x^{2\alpha+1}\,dx)$ of even entire functions $f$ of exponential type at most $\sigma>0$, where $1\le p\infty$ and $\alpha\ge -1/2$. We prove that, for the same $\alpha$ and $p$ $$ \mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p), $$ where $\mathcal{L}(\alpha,p)$ is the sharp constant in the Nikolskii inequality $$ \sup_{x\in \mathbb{R}}|f(x)|\le \mathcal{L}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(\int_{\mathbb{R}}|f(x)|^{p}|x|^{2\alpha+1}\,dx\biggr)^{1/p} $$ for any (not necessary even) functions $f\in \mathcal{E}_{p,\alpha}^{\sigma}:=\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$. Also we give bounds of the normalized Nikolskii constant $$ \mathcal{L}^{*}(\alpha,p):= (2^{2\alpha+2}\Gamma(\alpha+1)\Gamma(\alpha+2))^{1/p}\mathcal{L}(\alpha,p), $$ which are as follows: $$ \mathcal{L}^{*}(\alpha,p)\le \lceil p/2\rceil^{\frac{2\alpha+2}{p}},\quad p\in (0,\infty), $$ and for fixed $p\in [1,\infty)$ $$ \mathcal{L}^{*}(\alpha,p)\ge (p/2)^{\frac{2\alpha+2}{p}\,(1+o(1))},\quad \alpha\to \infty. $$ The upper estimate is sharp if and only if $p=2$. In this case, $\mathcal{L}^{*}(\alpha,2)=1$ for each $\alpha\ge -1/2$. Our approach relies on the one-dimensional Dunkl harmonic analysis. To prove the identity $\mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p)$ we use the even positive Dunkl-type generalized translation operator $T^{t}$ such that is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant one and invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$. The proof of the upper estimate of the constant $\mathcal{L}^{*}(\alpha,p)$ is based on estimation of norms of the reproducing kernel for the subspace $\mathcal{E}_{p,\alpha}^{1}$ and the multiplicative inequality for the Nikolskii constant. To obtain the lower estimate we consider the normalized Bessel function $j_{\nu}\in \mathcal{E}_{p,\alpha}^{1}$ of order $\nu\sim (2\alpha+2)/p$.
Keywords: weighted Nikolskii inequality, sharp constant, entire function of exponential type, Dunkl transform, generalized translation operator, reproducing kernel, Bessel function.
@article{CHEB_2018_19_2_a4,
     author = {D. V. Gorbachev and N. N. Dobrovolsky},
     title = {Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovolsky
TI  - Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 67
EP  - 79
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/
LA  - ru
ID  - CHEB_2018_19_2_a4
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovolsky
%T Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
%J Čebyševskij sbornik
%D 2018
%P 67-79
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/
%G ru
%F CHEB_2018_19_2_a4
D. V. Gorbachev; N. N. Dobrovolsky. Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 67-79. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/

[1] N. N. Achieser, Theory of Approximation, Dover, New York, 2004 | MR

[2] N. B. Andersen, M. de Jeu, “Elementary proofs of Paley–Wiener theorems for the Dunkl transform on the real line”, Int. Math. Res. Notices, 2005:30 (2005), 1817–1831 | DOI | MR | Zbl

[3] V. V. Arestov, “Inequality of different metrics for trigonometric polynomials”, Math. Notes, 27:4 (1980), 265–269 | DOI | MR | Zbl

[4] V. Arestov, A. Babenko, M. Deikalova, Á. Horváth, “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-Line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[5] G. Bateman, A. Erdélyi et al, Higher Transcendental Functions, v. II, McGraw Hill Book Company, New York, 1953 | MR

[6] F. Dai, D. Gorbachev, S. Tikhonov, “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2018 (to appear) , arXiv: 1708.09837

[7] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | MR | Zbl

[8] D. V. Gorbachev, “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2005, Suppl. 2, S117–S138 | MR | Zbl

[9] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L^{p}$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI | MR

[10] I. I. Ibragimov, A. S. Dzhafarov, “Some inequalities for an entire function of finite degree and its derivatives”, Dokl. Akad. Nauk SSSR, 138:4 (1961), 755–758 | MR | Zbl

[11] I. P. Li, C. M. Su, V. I. Ivanov, “Some problems of approximation theory in the spaces $L_{p}$ on the line with power weight”, Math. Notes, 90:3 (2011), 344–364 | DOI | MR | Zbl

[12] R. Nessel, G. Wilmes, “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25:1 (1978), 7–18 | DOI | MR | Zbl

[13] S. M. Nikolskii, Approximation of functions of several variables and imbedding theorems, Springer, Berlin–Heidelberg–New York, 1975 | MR

[14] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izvestiya: Math., 71:5 (2007), 1001–1048 | DOI | MR | Zbl

[15] M. Rösler, “Dunkl Operators: Theory and Applications”, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl

[16] K. Stempak, “A weighted uniform $L^p$-estimate of Bessel functions: a note on a paper of K. Guo: "A uniform $L^p$ estimate of Bessel functions and distributions supported on $S^{n-1}$"”, Proc. Amer. Math. Soc., 128:10 (2000), 2943–2945 | DOI | MR | Zbl