Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a4, author = {D. V. Gorbachev and N. N. Dobrovolsky}, title = {Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {67--79}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/} }
D. V. Gorbachev; N. N. Dobrovolsky. Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 67-79. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a4/
[1] N. N. Achieser, Theory of Approximation, Dover, New York, 2004 | MR
[2] N. B. Andersen, M. de Jeu, “Elementary proofs of Paley–Wiener theorems for the Dunkl transform on the real line”, Int. Math. Res. Notices, 2005:30 (2005), 1817–1831 | DOI | MR | Zbl
[3] V. V. Arestov, “Inequality of different metrics for trigonometric polynomials”, Math. Notes, 27:4 (1980), 265–269 | DOI | MR | Zbl
[4] V. Arestov, A. Babenko, M. Deikalova, Á. Horváth, “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-Line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl
[5] G. Bateman, A. Erdélyi et al, Higher Transcendental Functions, v. II, McGraw Hill Book Company, New York, 1953 | MR
[6] F. Dai, D. Gorbachev, S. Tikhonov, “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2018 (to appear) , arXiv: 1708.09837
[7] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | MR | Zbl
[8] D. V. Gorbachev, “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math., 2005, Suppl. 2, S117–S138 | MR | Zbl
[9] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L^{p}$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI | MR
[10] I. I. Ibragimov, A. S. Dzhafarov, “Some inequalities for an entire function of finite degree and its derivatives”, Dokl. Akad. Nauk SSSR, 138:4 (1961), 755–758 | MR | Zbl
[11] I. P. Li, C. M. Su, V. I. Ivanov, “Some problems of approximation theory in the spaces $L_{p}$ on the line with power weight”, Math. Notes, 90:3 (2011), 344–364 | DOI | MR | Zbl
[12] R. Nessel, G. Wilmes, “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25:1 (1978), 7–18 | DOI | MR | Zbl
[13] S. M. Nikolskii, Approximation of functions of several variables and imbedding theorems, Springer, Berlin–Heidelberg–New York, 1975 | MR
[14] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izvestiya: Math., 71:5 (2007), 1001–1048 | DOI | MR | Zbl
[15] M. Rösler, “Dunkl Operators: Theory and Applications”, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl
[16] K. Stempak, “A weighted uniform $L^p$-estimate of Bessel functions: a note on a paper of K. Guo: "A uniform $L^p$ estimate of Bessel functions and distributions supported on $S^{n-1}$"”, Proc. Amer. Math. Soc., 128:10 (2000), 2943–2945 | DOI | MR | Zbl