Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a37, author = {E. V. Manokhin}, title = {To history of influence of the theorem of {Milyutin} on researches in geometry of {Banach} spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {533--541}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a37/} }
TY - JOUR AU - E. V. Manokhin TI - To history of influence of the theorem of Milyutin on researches in geometry of Banach spaces JO - Čebyševskij sbornik PY - 2018 SP - 533 EP - 541 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a37/ LA - ru ID - CHEB_2018_19_2_a37 ER -
E. V. Manokhin. To history of influence of the theorem of Milyutin on researches in geometry of Banach spaces. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 533-541. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a37/
[1] A. A. Milyutin, “Isomorphism of spaces of continuous functions over compact sets of continuum cardinality”, The Function theory, a functional analysis and their applications, 1966, no. 2, 150–156 (Russian)
[2] A. Pelchinsky, Linear prolongations, linear averages and their applications, World, M., 1979
[3] M. I. Kadets, “Topological equivalence of all separable Banach spaces”, Dokl. Akad. Nauk SSSR, 167 (1966), 23–25 (Russian) | Zbl
[4] M. I. Kadets, “Proof of the topological equivalence of all separable infinite-dimensional Banach spaces”, Funktsional. Anal. i Prilozhen., 1:1 (1967), 61–70 (Russian) | Zbl
[5] J. A. Clarkson, “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40:3 (1936), 396–414 | DOI | MR
[6] A. R. Lovaglia, “Locally uniformly convex Banach spaces”, Trans. Amer. Math. Soc., 78:1 (1955), 225–238 | DOI | MR | Zbl
[7] M. I. Kadets, “Spaces isomorphic to a locally uniformly convex space”, Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 6, 51–57 (Russian) | Zbl
[8] J. Lindenstrauss, “Weakly compacts sets-their topological properties and Banach spaces they generate”, Ann. Math. Studies, 69 (1972), 235–273 | MR | Zbl
[9] S. L. Trojanski, “About equivalent norms and the minimum systems in nonseparable Banach spaces”, The Function theory, Funkts. analysis and their applications, 43 (1972), 125–138 (Russian)
[10] M. I. Kadets, “About connection between weak and a strong convergence”, DAN UkrSSR, 1959, no. 9, 949–952 (Russian) | Zbl
[11] B. Beazamy, Introduction to Banach Spaces and their Geometry, Oxford, 1985, 334 pp. | MR
[12] R. Deville, G. Godefroy, V. Zizler, Smoothness and renorming in Banach spaces, Pitman monographs and surveys in pure and applied mathematics, 64, Longman scientific and technical, Longman house, Burnt mill. Harrow, 1993 | MR
[13] E. V. Manokhin, “$\Gamma$-weakly locally uniform convexity in Banach spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 1, 51–54 (Russian) | MR | Zbl
[14] E. V. Manokhin, “On K-locally uniformly convex spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 5, 32–34 (Russian) | MR | Zbl
[15] P. S. Aleksandrov, Introduction in the theory of sets and the general topology, The Science, M., 1977
[16] J. E. Jayne, I. Namioka, C. A. Rogers, “$\sigma$-fragmentable Banach spaces”, Mathematika, 39 (1992), 166–188 | DOI | MR
[17] E. V. Manokhin, About geometrical and linearly-topological properties of some Banach spaces, The author's PHD-abstract, Kharkov State University, Kharkov, 1992
[18] M. S. Kobylina, “Locally uniformly rotund norm on $C(K)$,where $K$ is lexicographic square”, Vestnic Tomsk State University, 2004, no. 4, 24–27 (Russian)
[19] V. Zizler, “Non-separable banach spaces”, Handbook of the Geometry of Banach spaces, v. 2, Elsevier, Amsterdam, 2003, 1743–1816 | DOI | MR
[20] M. S. Kobylina, “SHK-norms on spaces of continuous functions on pseudo-trees”, Bulletin of Tomsk State University, 2007, no. 297, 146–150 (Russian)
[21] R. G. Haydon, “Trees in renorming theory”, Proc. London Math. Soc., 78 (1999), 541–584 | DOI | MR | Zbl
[22] R. G. Haydon, V. Zizler, “A new spaces with no locally uniformly rotund renorming”, Can. Math. Bull., 32:1 (1989), 122–128 | DOI | MR | Zbl
[23] R. G. Haydon, Hajek Petr, “Smooth norms and approximation in Banach spaces of the type $C(K)$”, The Quarterly Journal of Mathematics, 58 (2007), 221–228 | DOI | MR | Zbl
[24] R. G. Haydon, “Locally uniformly convex norms in Banach spaces and their duals”, J. Funct. Anal., 254:8 (2008), 2023–2039 | DOI | MR | Zbl
[25] R. G. Haydon, S. A. Argyros, “A hereditarily indecomposable L-infinity-space that solves the scalar-plus-compact problem”, Acta Mathematica, 206:1 (2011), 1–54 | DOI | MR | Zbl