On a version of Mertens's theorem
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 529-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem on the convergence of a product absolutely and conditionally convergent series, which is defined through the discrete integral in the N.V. Bugaev's sense, was proved. Number-theoretical examples, which illustrate this theorem, are given.
Keywords: absolutely and conditionally convergent series, the Mertens's theorem on a product of series, Bernoulli's polynomials, Riemann's zeta-function.
@article{CHEB_2018_19_2_a36,
     author = {A. Ghiyasi},
     title = {On a version of {Mertens's} theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {529--532},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a36/}
}
TY  - JOUR
AU  - A. Ghiyasi
TI  - On a version of Mertens's theorem
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 529
EP  - 532
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a36/
LA  - ru
ID  - CHEB_2018_19_2_a36
ER  - 
%0 Journal Article
%A A. Ghiyasi
%T On a version of Mertens's theorem
%J Čebyševskij sbornik
%D 2018
%P 529-532
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a36/
%G ru
%F CHEB_2018_19_2_a36
A. Ghiyasi. On a version of Mertens's theorem. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 529-532. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a36/

[1] H. Davenport, “On some infinite series invjlving arithmetical functions”, J. London Math. Soc., 11 (1936), 8–14 | MR

[2] G. I. Arhipov, V. A. Sadovnichij, V. N. CHubarikov, Lekcii po matematicheskomu analizu, Izd. 6-oe, Drofa, M., 1987

[3] G. I. Arkhipov, V. N. Chubarikov, A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis, de Gruyter Expositions in Mathematics, 39, Walter de Gruyter, Berlin–New York, 2004 | MR | Zbl