Substitutions and bounded remainder sets
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 501-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the multidimensional problem of distribution of fractional parts of a linear function. A subset of a multidimensional torus is called a bounded remainder set if the remainder term of the multidimensional problem of the distribution of the fractional parts of a linear function on this set is bounded by an absolute constant. We are interested not only in the individual bounded remainder sets but also in toric tilings into such sets. A new class of tilings of a $d$-dimensional torus into sets of $(d + 1)$ types is introduced. These tilings are defined in combinatorics and geometric terms and are called generalized exchanged tilings. It is proved that all generalized exchanged toric tilings consist of bounded remainder sets. Corresponding estimate of the remainder term is effective. We also find conditions that ensure that the estimate of the remainder term for the sequence of generalized exchanged toric tilings does not depend on the concrete tiling in the sequence. Using the Arnoux-Ito theory of geometric substitutions we introduce a new class of generalized exchanged tilings of multidimensional tori into bounded remainder sets with an effective estimate of the remainder term. Earlier similar results were obtained in the two-dimensional case for one specific substitution — a geometric version of well-known Rauzy substitution. With the help of the passage to the limit, another class of generalized exchanged toric tilings into bounded remainder sets with fractal boundaries is constructed (so-called generalized Rauzy fractals).
Keywords: uniform distribution, bounded remainder sets, toric tilings, unimodular Pisot substitutions, geometric substitutions.
@article{CHEB_2018_19_2_a34,
     author = {A. V. Shutov},
     title = {Substitutions and bounded remainder sets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {501--522},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Substitutions and bounded remainder sets
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 501
EP  - 522
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/
LA  - ru
ID  - CHEB_2018_19_2_a34
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Substitutions and bounded remainder sets
%J Čebyševskij sbornik
%D 2018
%P 501-522
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/
%G ru
%F CHEB_2018_19_2_a34
A. V. Shutov. Substitutions and bounded remainder sets. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 501-522. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/

[1] E. Hecke, “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76 | DOI | MR

[2] P. Erdös, “Problems and results on diophantine approximations”, Compositio Math., 16 (1964), 52–65 | MR | Zbl

[3] H. Furstenberg, M. Keynes, L. Shapiro, “Prime flows in topological dynamics”, Israel J. Math., 14:1 (1973), 26–38 | DOI | MR | Zbl

[4] S. Grepstad, N. Lev, “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geometric and Functional Analysis, 25:1 (2015), 87–133 | DOI | MR | Zbl

[5] A. Heynes, H. Koivusalo, “Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices”, Israel J. Math., 212:1 (2016), 189–201 | DOI | MR

[6] M. Kelly, L. Sadun, “Patterns equivariant cohomology and theorems of Kesten and Oren”, Bull. London Math. Soc., 47:1 (2015), 13–20 | DOI | MR | Zbl

[7] H. Kesten, “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12:2 (1966), 193–212 | DOI | MR | Zbl

[8] P. Liardet, “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl

[9] R. Szüsz, “Uber die Verteilung der Vielfachen einer Komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5:1–2 (1954), 35–39 | DOI | MR | Zbl

[10] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[11] V. Baladi, D. Rockmore, N. Tongring, C. Tresser, “Renormalization on the $n$-dimensional torus”, Nonlinearity, 5:5 (1992), 1111–1136 | DOI | MR | Zbl

[12] A. V. Shutov, “The two-dimensional Hecke-Kesten problem”, Chebyshevskii Sbornik, 12:2 (2011), 151–162 | MR | Zbl

[13] V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets”, Journal of Mathematical Sciences, 184:6 (2012), 716–745 | DOI | MR | Zbl

[14] V. G. Zhuravlev, “Multidimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Mathematical Journal, 24:1 (2013), 71–97 | DOI | MR | Zbl

[15] V. Berthe, S. Ferenczi, L. Q. Zamboni, “Interactions between dynamics, arithmetics, and combinatorics: the good, the bad, and the ugly”, Algebraic and Topological Dynamics, 385 (2005), 333–364 | DOI | MR | Zbl

[16] N. Chevallier, “Coding of a translation of the two-dimensional torus”, Monatshefte für Mathematik, 157:2 (2009), 101–130 | DOI | MR | Zbl

[17] A. V. Shutov, “Multidimensional generalization of sums of fraction parts and their applications to number theory”, Chebyshevskii Sbornik, 14:1 (2013), 104–118 | DOI | MR | Zbl

[18] A. V. Shutov, “Trigonometric sums over one-dimensional quasilattices of arbitrary codimension”, Mathematical notes, 97:5–6 (2015), 791–802 | DOI | DOI | MR | Zbl

[19] V. Berthe, “Arithmetic discrete planes are quasicrystals”, DGCI 2009, 15th IAPR International Conference on Discrete Geometry for Computer Imagery, Springer, 2009, 1–12 | DOI | MR | Zbl

[20] A. V. Shutov, A. V. Maleev, “Generalized Rauzy fractals and quasiperiodic tilings”, Classification and Application of Fractals: New Reserch, Nova Publishers, 2012, 55–111 | MR

[21] A. V. Shutov, A. V. Maleev, “Quasiperiodic plane tilings based on stepped surfaces”, Acta Crystallographica, A64 (2008), 376–382 | DOI | MR | Zbl

[22] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallographica, A66 (2010), 427–437 | DOI | MR

[23] A. A. Abrosimova, “BR-sets”, Chebyshevskii Sbornik, 16:2 (2015), 8–22 | DOI | MR | Zbl

[24] A. A. Shutov, A. V. Zhukova, “On the distribution function of the remainder term on bounded remainder sets”, Chebyshevskii Sbornik, 17:1 (2016), 90–107 | DOI | MR | Zbl

[25] V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 137:2 (2006), 4658–4672 | DOI | MR | Zbl

[26] Kuznetsova D. V., Shutov A. V., “Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets”, Mathematical Notes, 98:5–6 (2015), 932–948 | DOI | DOI | MR | Zbl

[27] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 | MR

[28] P. Arnoux, S. Ito, “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | MR | Zbl

[29] A. V. Shutov, “Exchanged toric tilings and the multidimensional Hecke-Kesten problem”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta, 6:2 (2012), 249–253

[30] Kuznetsova D. V., Shutov A. V., “On the first return times for toric rotations”, Chebyshevskii Sbornik, 14:4 (2013), 127–130 | DOI | MR | Zbl

[31] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izvestiya: Mathematics, 71:2 (2007), 307–340 | DOI | DOI | MR | Zbl

[32] A. V. Shutov, Generalized Fibonacci tilings and their applications, Lambert Academic Publishing, 2012, 144 pp.

[33] S. Ito, H. Rao, “Atomic surfaces, tilings and coincidences I. Irreducible case”, Israel J. Math., 153:1 (2006), 129–156 | DOI | MR

[34] M. Barge, J. Kwapisz, “Geometric theory of unimodular Pisot substitutions”, Amer. J. Math., 128:5 (2006), 1219–1282 | DOI | MR | Zbl

[35] V. Berthe, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals, and tilings”, Combinatorics, Automata and Number Theory, Cambridge University Press, 2010, 248–323 | DOI | MR | Zbl

[36] S. Akiyama, M. Barge, V. Berthe, J. Y. Lee, A. Siegel, “On the Pisot substitution conjecture”, Mathematics of Aperiodic Order, Springer, 2015, 33–72 | DOI | MR | Zbl

[37] V. Berthe, J. Bourdon, T. Jolivet, A. Siegel, “A combinatorial approach to products of Pisot substitutions”, Ergodic Theory Dynam. Systems, 36:6 (2016), 1757–1794 | DOI | MR | Zbl

[38] V. G. Zhuravlev, “Induced bounded remainder sets”, St. Petersburg Mathematical Journal, 28:5 (2017), 671–688 | DOI | MR | Zbl