Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a34, author = {A. V. Shutov}, title = {Substitutions and bounded remainder sets}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {501--522}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/} }
A. V. Shutov. Substitutions and bounded remainder sets. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 501-522. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a34/
[1] E. Hecke, “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76 | DOI | MR
[2] P. Erdös, “Problems and results on diophantine approximations”, Compositio Math., 16 (1964), 52–65 | MR | Zbl
[3] H. Furstenberg, M. Keynes, L. Shapiro, “Prime flows in topological dynamics”, Israel J. Math., 14:1 (1973), 26–38 | DOI | MR | Zbl
[4] S. Grepstad, N. Lev, “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geometric and Functional Analysis, 25:1 (2015), 87–133 | DOI | MR | Zbl
[5] A. Heynes, H. Koivusalo, “Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices”, Israel J. Math., 212:1 (2016), 189–201 | DOI | MR
[6] M. Kelly, L. Sadun, “Patterns equivariant cohomology and theorems of Kesten and Oren”, Bull. London Math. Soc., 47:1 (2015), 13–20 | DOI | MR | Zbl
[7] H. Kesten, “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12:2 (1966), 193–212 | DOI | MR | Zbl
[8] P. Liardet, “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl
[9] R. Szüsz, “Uber die Verteilung der Vielfachen einer Komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5:1–2 (1954), 35–39 | DOI | MR | Zbl
[10] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl
[11] V. Baladi, D. Rockmore, N. Tongring, C. Tresser, “Renormalization on the $n$-dimensional torus”, Nonlinearity, 5:5 (1992), 1111–1136 | DOI | MR | Zbl
[12] A. V. Shutov, “The two-dimensional Hecke-Kesten problem”, Chebyshevskii Sbornik, 12:2 (2011), 151–162 | MR | Zbl
[13] V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets”, Journal of Mathematical Sciences, 184:6 (2012), 716–745 | DOI | MR | Zbl
[14] V. G. Zhuravlev, “Multidimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Mathematical Journal, 24:1 (2013), 71–97 | DOI | MR | Zbl
[15] V. Berthe, S. Ferenczi, L. Q. Zamboni, “Interactions between dynamics, arithmetics, and combinatorics: the good, the bad, and the ugly”, Algebraic and Topological Dynamics, 385 (2005), 333–364 | DOI | MR | Zbl
[16] N. Chevallier, “Coding of a translation of the two-dimensional torus”, Monatshefte für Mathematik, 157:2 (2009), 101–130 | DOI | MR | Zbl
[17] A. V. Shutov, “Multidimensional generalization of sums of fraction parts and their applications to number theory”, Chebyshevskii Sbornik, 14:1 (2013), 104–118 | DOI | MR | Zbl
[18] A. V. Shutov, “Trigonometric sums over one-dimensional quasilattices of arbitrary codimension”, Mathematical notes, 97:5–6 (2015), 791–802 | DOI | DOI | MR | Zbl
[19] V. Berthe, “Arithmetic discrete planes are quasicrystals”, DGCI 2009, 15th IAPR International Conference on Discrete Geometry for Computer Imagery, Springer, 2009, 1–12 | DOI | MR | Zbl
[20] A. V. Shutov, A. V. Maleev, “Generalized Rauzy fractals and quasiperiodic tilings”, Classification and Application of Fractals: New Reserch, Nova Publishers, 2012, 55–111 | MR
[21] A. V. Shutov, A. V. Maleev, “Quasiperiodic plane tilings based on stepped surfaces”, Acta Crystallographica, A64 (2008), 376–382 | DOI | MR | Zbl
[22] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallographica, A66 (2010), 427–437 | DOI | MR
[23] A. A. Abrosimova, “BR-sets”, Chebyshevskii Sbornik, 16:2 (2015), 8–22 | DOI | MR | Zbl
[24] A. A. Shutov, A. V. Zhukova, “On the distribution function of the remainder term on bounded remainder sets”, Chebyshevskii Sbornik, 17:1 (2016), 90–107 | DOI | MR | Zbl
[25] V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 137:2 (2006), 4658–4672 | DOI | MR | Zbl
[26] Kuznetsova D. V., Shutov A. V., “Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets”, Mathematical Notes, 98:5–6 (2015), 932–948 | DOI | DOI | MR | Zbl
[27] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 | MR
[28] P. Arnoux, S. Ito, “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | MR | Zbl
[29] A. V. Shutov, “Exchanged toric tilings and the multidimensional Hecke-Kesten problem”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta, 6:2 (2012), 249–253
[30] Kuznetsova D. V., Shutov A. V., “On the first return times for toric rotations”, Chebyshevskii Sbornik, 14:4 (2013), 127–130 | DOI | MR | Zbl
[31] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izvestiya: Mathematics, 71:2 (2007), 307–340 | DOI | DOI | MR | Zbl
[32] A. V. Shutov, Generalized Fibonacci tilings and their applications, Lambert Academic Publishing, 2012, 144 pp.
[33] S. Ito, H. Rao, “Atomic surfaces, tilings and coincidences I. Irreducible case”, Israel J. Math., 153:1 (2006), 129–156 | DOI | MR
[34] M. Barge, J. Kwapisz, “Geometric theory of unimodular Pisot substitutions”, Amer. J. Math., 128:5 (2006), 1219–1282 | DOI | MR | Zbl
[35] V. Berthe, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals, and tilings”, Combinatorics, Automata and Number Theory, Cambridge University Press, 2010, 248–323 | DOI | MR | Zbl
[36] S. Akiyama, M. Barge, V. Berthe, J. Y. Lee, A. Siegel, “On the Pisot substitution conjecture”, Mathematics of Aperiodic Order, Springer, 2015, 33–72 | DOI | MR | Zbl
[37] V. Berthe, J. Bourdon, T. Jolivet, A. Siegel, “A combinatorial approach to products of Pisot substitutions”, Ergodic Theory Dynam. Systems, 36:6 (2016), 1757–1794 | DOI | MR | Zbl
[38] V. G. Zhuravlev, “Induced bounded remainder sets”, St. Petersburg Mathematical Journal, 28:5 (2017), 671–688 | DOI | MR | Zbl