About the partitions of a truncated icosahedron for parquet-hedra
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 447-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of parquet-facets began immediately after the classification of convex polyhedra with the regular faces half a century ago was completed. Parquet-Hedron will be called a convex polyhedron with regular or parquet faces.Recall, a parquet is a convex polygon made up of a finite and larger unit of the number of equiangular polygons. Parquet polygons are classified: there are 23 of their type. Four of them can be represented by regular polygons, and five more have equilateral representatives, composed as from regular polygons, that each vertex of such a regular polygon serves as the vertex of the parquet. About ten years ago, all parquet-facets became known to within the similarity, which apart from the right ones can also have the five parquet faces. A hypothesis has been put forward, which leads to the finding of all equilateral parquethedra. Without consideration of joints on the same faces, it is impossible to obtain all types of parquet facets, i.e. to close the main problem: "What are all types of parquethedra?" In this paper, we consider some of the connections required for the solution of this problem of a regular-angled pentagonal pyramid $M_3$ with single edges, truncated along the middle lines of the lateral triangular faces of the pyramid $M_{3a}$, bodies $M_{19a}$ and $M_{19b}$, obtained from the truncated icosahedron $ M_ {19} $ by cutting off $M_{3a}$ by two and three planes, respectively. The edges of the last three bodies and the edges of the junction have lengths one and two. At present, this result may be of independent interest for quasicrystallography. In particular, the Archimedean body $M_{19}$ with regular pentagons and two hexagons at each vertex is a representative of fullerenes. In addition, the amount of the calculations already done shows the need to attract programming and computer graphics for substantially larger scales, for which the work done will serve as a good test.
Keywords: parquet polygon, parquet-hedron, symmetry group, truncated icosahedron.
@article{CHEB_2018_19_2_a31,
     author = {E. S. Karpova and A. V. Timofeenko},
     title = {About the partitions of a truncated icosahedron for parquet-hedra},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {447--476},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a31/}
}
TY  - JOUR
AU  - E. S. Karpova
AU  - A. V. Timofeenko
TI  - About the partitions of a truncated icosahedron for parquet-hedra
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 447
EP  - 476
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a31/
LA  - ru
ID  - CHEB_2018_19_2_a31
ER  - 
%0 Journal Article
%A E. S. Karpova
%A A. V. Timofeenko
%T About the partitions of a truncated icosahedron for parquet-hedra
%J Čebyševskij sbornik
%D 2018
%P 447-476
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a31/
%G ru
%F CHEB_2018_19_2_a31
E. S. Karpova; A. V. Timofeenko. About the partitions of a truncated icosahedron for parquet-hedra. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 447-476. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a31/

[1] Prjakhin J. A., “Vypuklyye mnogogranniki, grani kotorykh ravnougol'ny ili slozheny iz ravnougol'nykh”, Zap. Nauchn. Sem. LOMI, 45, “Nauka”, Leningrad. Otdel., Leningrad, 1974, 111–112

[2] Timofeenko A. V., “O vypuklykh mnogogrannikakh s ravnougol'nymi i parketnymi granyami”, Chebyshevsky Sb., 12:2(38) (2011), 118–126 | MR | Zbl

[3] Zalgaller V. A., “Convex polyhedra with regular faces”, Sem. in Math. Steklov Math. Inst. Leningrad, 2, Consultants Bureau, New York, 1969 | MR

[4] N. W. Johnson, “Convex polyhedra with regular faces”, Canad. J. Math., 18 (1966), 169–200 | DOI | MR | Zbl

[5] Ivanov B. A., “Mnogogranniki s granyami, slozhennymi iz pravil'nykh mnogougol'nikov”, Ukr. geom. sb., 10 (1971), 20–34 | Zbl

[6] Prjakhin J. A., “O vypuklykh mnogogrannikakh s pravil'nymi granyami”, Ukr. geom. sb., 14 (1973), 83–88

[7] Timofeenko A. V., “Convex regular-faced polyhedra indecomposable by any plane to regular-faced polyhedra”, Siberian Adv. Math., 19:4 (2009), 287–300 | DOI | MR | MR | Zbl

[8] Timofeenko A. V., “The non-platonic and non-Archimedean noncomposite polyhedra”, Journal of Mathematical Sciences (New York), 162:5 (2009), 710–729 | DOI | MR | MR | Zbl

[9] Timofeenko A. V., “K teorii parketogrannikov”, Algebra, teoriya chisel i diskretnaya geometriya: sovr. problemy i prilozheniya, Mater. XV Mezhdunarodnoy konferentsii, posv. stoletiyu so dnya rozhd. doktora fiz.-mat. nauk, professora Moskovskogo gos. universiteta im. M. V. Lomonosova Korobova Nikolaya Mikhaylovicha, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2018, 58–61

[10] Tabinova O. A., Timofeenko A. V., “O klassifikatsii parketnykh mnogougol'nikov”, Vestnik Krasnoyarskogo gosudarstvennogo pedagogicheskogo universiteta im. V.P. Astaf'yeva, 2013, no. 1 (23), 216–219

[11] Gurin A. M., “K istorii izucheniya vypuklykh mnogogrannikov s pravil'nymi granyami”, Sib. elektron. matem. izv., 7 (2010), A.5–A.23 | Zbl

[12] Gurin A. M., Zalgaller V. A., “K istorii izucheniya vypuklykh mnogogrannikov s pravil'nymi granyami i granyami, sostavlennymi iz pravil'nykh”, Tr. S. Peterburg. mat. o-va, 14 (2008), 215–294

[13] Timofeenko A. V., “Junction of noncomposite polyhedra”, St. Petersburg Mathematical Journal, 21:3 (2010), 483–512 | DOI | MR | Zbl

[14] Timofeenko A. V., “Corrections to “Junction of noncomposite polyhedra””, St. Petersburg Mathematical Journal, 23:4 (2012), 779–780 | DOI | Zbl

[15] Timofeenko A. V., “K perechnyu vypuklykh pravil'nogrannikov”, Matematika, Sovremennyye problemy matematiki i mekhaniki, VI, no. 3, eds. I.Kh. Sabitov, V. N. Chubarikov, Izd-vo MGU, M., 2011, 155–170

[16] Timofeenko A. V., Otmakhova E. S., “Kompleks resheniy, neobkhodimykh dlya organizatsii raboty nad nauchnoy problemoy kollektivom sotrudnikov i studentov”, Vestnik Krasnoyarskogo gosudarstvennogo pedagogicheskogo universiteta im. V.P. Astaf'yeva, 2015, no. 3 (33), 79–82

[17] Timofeenko A. V., Sudak D. N., Cherepukhina A. A., “Sostavlennyye ne boleye, chem iz 16 pravil'nogrannykh piramid vypuklyye tela s takimi kak u piramid ili vdvoye bol'shimi robrami”, Mezhdunarodnaya shkola-seminar «Sovremennaya geometriya i yeyo prilozheniya». Mezhdunarodnaya nauchnaya konferentsiya «Sovremennaya geometriya i yeyo prilozheniya», sbornik trudov, Izd-vo Kazan. un-ta, Kazan', 2017, 140–142

[18] Buchstaber V. M., Erokhovets N. Yu., “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289:1 (2015), 104–133 | DOI | DOI | MR | Zbl