On some fibinomial identities
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fibinomial identity is identity that combine Fibonacci numbers and binomial or multinomial coefficients. In this paper, for obtaining new fibinomial identities we consider determinants and permanents for some families of lower Toeplitz–Hessenberg matrices $H_n=(h_{ij})$, where $h_{ij}=0$ for all $j>i+1$, $h_{ij}=a_{i-j+1}$, and $a_{i,i+1}=2$, having various translates of the Fibonacci numbers $F_n$ for the nonzero entries.These determinant and permanent formulas may also be rewritten as identities involving sums of products of Fibonacci numbers and multinomial coefficients. For example, for $n\geq1$, the following formula holds $$ \sum_{s_1+2s_2+\cdots+ns_n=n}(-1)^{s_1+\cdots+s_n}{s_1+\cdots+s_n\choose s_1,\ldots, s_n}\left(\frac{F_2}{2}\right)^{s_1}\left(\frac{F_4}{2}\right)^{s_2}\cdots\left(\frac{F_{2n}}{2}\right)^{s_n}= \frac{1-4^n}{3\cdot 2^n}, $$ where ${s_1+\cdots+s_n\choose s_1,\ldots, s_n}=\frac{(s_1+\cdots+s_n)!}{s_1!\cdots s_n!}$ is multinomial coefficient, and the summation is over nonnegative integers $s_j$ satisfying Diophantine equation $s_1 +2s_2 +\cdots +ns_n=n$.Also, we establish connection formulas between Jacobsthal, Pell, Pell-Lucas numbers and Fibonacci numbers using Toeplitz-Hessenberg determinants.
Keywords: Fibonacci sequence, Fibonacci numbers, fibinomial identity, Jacobsthal sequence, Pell sequence, Pell-Lucas sequence, Hessenberg matrix, Toeplitz-Hessenberg matrix, multinomial coefficient.
@article{CHEB_2018_19_2_a3,
     author = {T. P. Goy},
     title = {On some fibinomial identities},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {56--66},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a3/}
}
TY  - JOUR
AU  - T. P. Goy
TI  - On some fibinomial identities
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 56
EP  - 66
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a3/
LA  - ru
ID  - CHEB_2018_19_2_a3
ER  - 
%0 Journal Article
%A T. P. Goy
%T On some fibinomial identities
%J Čebyševskij sbornik
%D 2018
%P 56-66
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a3/
%G ru
%F CHEB_2018_19_2_a3
T. P. Goy. On some fibinomial identities. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 56-66. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a3/

[1] A. T. Benjamin, J. J. Quinn, J. A. Rouse, “Fibinomial identities”, Applications of Fibonacci numbers, 9, Kluwer Academic Publishers, Dordrecht, 19–24 | DOI | MR | Zbl

[2] T. Koshy, Fibonacci and Lucas Numbers and Applications, John Wiley Sons, New York, 2001 | MR

[3] R. A. Horn, C. R. Johnson, Matrix Analysis, New York, 2012 | MR

[4] N. J. A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences, https://ocis.org

[5] H. Civciv, “A note on the determinant of five-diagonal matrices with Fibonacci numbers”, Int. J. Contemp. Math. Sci., 3:9 (2008), 419–424 | MR | Zbl

[6] A. İpek, “On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers”, Eurasian Math. J., 2:2 (2011), 60–74 | MR | Zbl

[7] A. İpek, K. Arı, “On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers”, Appl. Math. Comput., 229 (2014), 433–439 | DOI | MR | Zbl

[8] M. Janjić, “Hessenberg matrices and integer sequences”, J. Integer Seq., 13 (2010), 10.7.8 | MR | Zbl

[9] K. Kaygısız, A. Şahin, “Determinant and permanent of Hessenberg matrix and Fibonacci type numbers”, Gen. Math. Notes, 9:2 (2012), 32–41

[10] A. A. Öcal, N. Tuglu, E. Altinişik, “On the representation of $k$-generalized Fibonacci and Lucas numbers”, Appl. Math. Comput., 170:1 (2005), 584–596 | MR | Zbl

[11] A. Tangboonduangjit, T. Thanatipanonda, “Determinants containing powers of generalized Fibonacci numbers”, J. Integer Seq., 19 (2016), 16.7.1 | MR | Zbl

[12] Goy T. P., “On new formulas for Fibonacci numbers”, Proc. VIII Sci. Tech. Conf. “Informatics and System Sciences” (Poltava, Ukraine), 2017, 51–54 (in Ukrainian)

[13] Goy T., “Some combinatorial identities for two-periodic Fibonacci sequence”, Proc. XII Int. Conf. “Fundamental and Applied Problems of Mathematics and Informatics” (Makhachkala, Russia), 2017, 107–109

[14] Goy T., “On new fibinomial identities”, Proc. XV Int. Conf. “Algebra, Number Theory and Discrete Geometry: Modern Problems and Applications” (Tula, Russia), 2018, 214–217 (in Russian)

[15] T. Muir, The Theory of Determinants in the Historical Order of Development, v. 3, Dover Publications, New York, 1960 | MR