Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a29, author = {D. A. Dolgov}, title = {An extended {Jebelean--Weber--Sedjelmaci} {GCD} algorithm}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {421--431}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a29/} }
D. A. Dolgov. An extended Jebelean--Weber--Sedjelmaci GCD algorithm. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 421-431. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a29/
[1] D. H. Lehmer, “Euclid's algorithm for large numbers”, American Mathematical Monthly, 45:4 (1938), 227–233 | DOI | MR
[2] A. Schönhage, “Schnelle Berechnung von Kettenbruchentwicklungen”, Acta Informat., 1:2 (1971), 139-144 | DOI | Zbl
[3] R. D. Crandall, C. Pomerance, Prime Numbers, Springer-Verlag, New York, 2005, 597 pp. | MR | Zbl
[4] J. Stein, “Computational problems associated with Racah algebra”, J. Comp. Phys., 1:3 (1967), 397–405 | DOI | Zbl
[5] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, v. 2, 3 edition, Addison-Wesley Professional, 1997, 784 pp. | MR
[6] J. Sorenson, “An Analysis of Lehmer's Euclidean GCD Algorithm”, Proc. of the International Symposium on Symbolic and Algebraic Computation, 1995, 254–258 | Zbl
[7] G. Cesari, “Parallel implementation of Schönhage's integer GCD algorithm”, Algorithmic Number Theory, ANTS 1998, Lecture Notes in Computer Science, 1423, 1998, 64–76 | DOI | MR | Zbl
[8] D. Stehle, P. Zimmermann, “A Binary Recursive Gcd Algorithm”, Algorithmic Number Theory, ANTS 2004, Lecture Notes in Computer Science, 3076, 2004, 411–425 | DOI | MR | Zbl
[9] J. Sorenson, The $k$-ary gcd algorithm, Comp. Sciences Tech. Rep., No 979, Univ. of Wisconsin-Madison, 1990, 20 pp.
[10] J. Sorenson, “Two Fast GCD Algorithms”, J. of Algorithms, 16:1 (1994), 110–144 | DOI | MR | Zbl
[11] D. Dolgov, “Polynomial GCD as a solution of system of linear equations”, Lobachevskii J. Math., 39:7 (2018) | DOI | MR | Zbl
[12] D. Dolgov, “GCD calculation in the search task of pseudoprime and strong pseudoprime numbers”, Lobachevskii J. Math., 37:6 (2016), 734–739 | DOI | MR | Zbl
[13] L. Weber, “The Accelerated Integer GCD Algorithm”, ACM Trans. Math. Software, 21:1 (1995), 111–122 | DOI | MR | Zbl
[14] S. M. Sedjelmaci, “Jebelean-Weber's algorithm without spurious factors”, Information Processing Letters, 102:6 (2007), 247–252 | DOI | MR | Zbl
[15] P. Zimmermann, 50 largest factors found by ECM, https://members.loria.fr/PZimmermann/records/top50.html
[16] Yu. L. Sagalovich, Vvedenie v algebraicheskie kody, IPPI RAN, 2011, 302 pp.
[17] S. T. Ishmukhametov, B. G. Mubarakov, K. M. Al-Anni, “Calculation of Bezout's Coefficients for the k-Ary Algorithm of Finding GCD”, Russ Math., 61:11 (2017), 26–33 | DOI | MR | Zbl
[18] Bassalygo L. A., Zinoviev V. A., “Remark on balanced incomplete block designs, near-resolvable block designs, and $q$-ary constant-weight codes”, Problems of Information Transmission, 53:1 (2017), 51–54 | DOI | MR | Zbl
[19] Bespalov E. A., Krotov D. S., “MDS codes in Doob graphs”, Problems of Information Transmission, 53:2 (2017), 136–154 | DOI | MR | Zbl