An analog of Ordin's theorem for parallelotopes
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 407-420

Voir la notice de l'article provenant de la source Math-Net.Ru

Parallelotope is a convex polytope in an affine space such that its shifts by vectors of a lattice $L$ fill the space without gaps and intersections by inner points. A special case of a parallelotope is a Dirichlet-Voronoi cell of a lattice with respect to a metric generated by a positive quadratic form. More than 100 years ago G. Voronoi supposed that each parallelotope is a Dirichlet-Voronoi cell of its lattice with respect some metric. A.Ordin introduced notions of an irreducible face and a $k$-irreducible parallelotope whose all faces of codimension $K$ are irreducible. A parallelotope tiling is called $k$-irreducible if its parallelotopes are $k$-irreducible. Ordin proved the conjecture of Voronoi for $3$-irreducible parallelotopes. There are two vectors related to a facet $F$ of a parallelotope. Namely, facet vector $l_F$ of the lattice $L$ of the tiling $\mathcal T$ and normal vector $p_F$ of the facet $F$. The facet vectors integrally generate the lattice $L$. One of the form of Voronoi conjecture asserts that there are such parameters $s(F)$ that scaled (canonical) normal vectors $s(F)p_F$ integrally generate a lattice $\Lambda$. In this paper, uniquely scaled faces are defined. Such a face $G$ determines uniquely up to a multiple parameters $s(F)$ of facets of the tiling $\mathcal T$ containing the face $G$. A tiling whose faces of codimension $k$ are uniquely scaled is $k$-irreducible. It is proved here the following analog of Ordin's Theorem: There exists a canonical scaling of normal vectors of facets of the tiling $\mathcal T$ if, for some integer $k\ge 1$, all its faces of codimension $k$ and $k+1$ are uniquely scaled. The cases $k=2$ and $k=3$ correspond to $2$- and $3$-irreducible tilings of Ordin.
Keywords: parallelotope, Voronoi conjecture, uniquely scaled normal vectors.
@article{CHEB_2018_19_2_a28,
     author = {V. P. Grishukhin},
     title = {An analog of {Ordin's} theorem for parallelotopes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a28/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - An analog of Ordin's theorem for parallelotopes
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 407
EP  - 420
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a28/
LA  - ru
ID  - CHEB_2018_19_2_a28
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T An analog of Ordin's theorem for parallelotopes
%J Čebyševskij sbornik
%D 2018
%P 407-420
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a28/
%G ru
%F CHEB_2018_19_2_a28
V. P. Grishukhin. An analog of Ordin's theorem for parallelotopes. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 407-420. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a28/