Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a27, author = {Yu. A. Basalov}, title = {On the history of estimates of the constant of the best joint diophanite approximations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {389--406}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/} }
Yu. A. Basalov. On the history of estimates of the constant of the best joint diophanite approximations. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 389-406. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/
[1] Adams W. W., “Simultaneous Diophantine approximations and cubic irrationals”, Pacific journal of mathematics, 30:1 (1969), 1–14 | DOI | MR | Zbl
[2] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrtionals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | DOI | MR
[3] Basalov Yu. A., On estimating the constant of simultaneous Diophantine approximation, 15.04.2018, arXiv: (data obrascheniya: 05.05.2018) 1804.05385 | Zbl
[4] Bernstein L., “A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8”, Journal of Number Theory, 4:1 (1972), 48–69 | DOI | MR | Zbl
[5] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | DOI | MR | Zbl
[6] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl
[7] Cusick J. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | DOI | MR | Zbl
[8] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | DOI | MR | Zbl
[9] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl
[10] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95
[11] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Akademie Notiz. Exhib., 1775, August 14; Commentationes arithmeticae collectae, v. II, 1849, 99–104
[12] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | DOI | MR
[13] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | DOI | MR | Zbl
[14] Hunter J., “The minimum discriminant of quintic fields”, Proc. Glasgow Math. Assoc., 3 (1957), 57–67 | DOI | MR | Zbl
[15] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche”, Math. Ann., 39 (1891), 279–284 | DOI | MR
[16] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchenjede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 ; Gesammelte Werke, v. IV, 1891, 385–426 | MR
[17] J. Koksma, Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles. I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Sect. Sci., 45 (1942), 256–262 ; 354–359; 471–478 ; 578–584 | MR | MR | MR
[18] Krass S., “Estimates for $n$-dimensional Diophantine approximation constants for $ n \geq 4 $”, J. Number Theory, 20:2 (1985), 172–176 | DOI | MR | Zbl
[19] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | DOI | MR | Zbl
[20] M. Lanker, P. Petek, M. S. Rugeji, The continued fractions ladder of specific pairs of irrationals, 30.07.2011, arXiv: (data obrascheniya: 05.05.2018) 1108.0087
[21] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | DOI | MR | Zbl
[22] Mayer J., “Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkorper”, S. B. Akad. Wiss. Wien Abt. Ila, 138 (1929), 733–742 | Zbl
[23] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896 | MR
[24] Mordell L., “Lattice points in some n-dimensional non-convex regions. I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781 ; 782–792 | MR | Zbl
[25] Mullender P., “Lattice points in non-convex regions. I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl
[26] Murru N., On the Hermite problem for cubic irrationaliti, 16.01.2014, arXiv: (data obrascheniya: 05.05.2018) 1305.3285
[27] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | DOI | MR | Zbl
[28] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl
[29] Perron O., “Grundlagen fur eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR | Zbl
[30] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl
[31] Szekers G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | DOI | MR
[32] Woods A. C., “The asymetric product of three homogenous linear forms”, Pacific J. Math., 93 (1981), 237–250 | DOI | MR | Zbl
[33] A. D. Bruno, “Algorithm of the generalized continued fraction”, Keldysh Institute preprints, 2004, 45, 27 pp.
[34] A. D. Bruno, “Структура наилучших диофантовых приближений”, Reports of the Academy of Sciences, 402:4 (2005), 439–444 | MR | Zbl
[35] A. D. Bruno, “Algorithm of the generalized continued fraction”, Reports of the Academy of Sciences, 402:6 (2005), 732–736 | MR | Zbl
[36] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Mir, 1965 | MR
[37] N. G. Moshchevitin, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239, 2002, 268–274
[38] W. M. Schmidt, Diophantine Approximation, Mir, 1983 | MR
[39] A Database for Number Fields. A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/