On the history of estimates of the constant of the best joint diophanite approximations
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 389-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a historical review of the results on the problem of estimating a constant best joint diophantine approximations for $ n $ real numbers. This problem is a special case of the more general problem of approximating $ n $ real linear forms and has itself rich history, ascending to P. G. Dirichlet. We will focus more on the approach of H. Davenport, based on the connection of Diophantine approximations with the geometry of numbers.The first part provides an overview of results obtained for $ n = 1 $ and $ n = 2 $ real numbers. Historically, estimates for $ n = 1 $ are based on the theory of continued fractions and the most significant is A. Hurwitz's estimate obtained in 1891. For $ n = 2 $ the basis of known estimates is mathematical apparatus of linear algebra (F. Furtwangler), geometry of numbers (H. Davenport, J. W. S. Cassels) and the results of multidimensional generalizations of continued fractions (V. Adams, T. Cusick).The second part is devoted to one of the first general estimates from below obtained in 1929 by F. Furtwangler. He constructed estimates of the discriminants of algebraic fields, which lead to an estimate of the quality of the approximation of $ n $ real numbers by rational, which in turn results in estimating the constant best joint diophantine approximations.The third part outlines the most fundamental of the currently known assessments obtained H. Davenport and then refined by J. W. S. Cassels. H. Davenport discovered the connection between the value critical determinant of lattices and the estimating of some forms. In the particular case it allows to get the value of the constant best joint diophantine approximations by calculating the critical determinant of the special lattice. However the calculation of critical determinants for lattices of this type is a difficult task. Therefore, J. W. S. Cassells switched from the direct calculation of the critical determinant to the estimating of its value. This approach proved to be quite fruitful and allowing us to obtain estimates of the constant best joint diophantine approximations for $ n = 2, 3, 4 $.The fourth part gives an overview of the well-known estimates from below for $ n > 2 $. These results are based on the use of the aforementioned approach of J. W. S. Cassels. It is worth noting that assessments of this kind are quite a complicated computational problem and in each case the solution of this problem required the use of new approaches.In the last part we present a review of some well-known estimates of the constant best diophantine approximations from above. Although this problem is not the main topic of this articles, but considerable interest is the comparison of approaches in assessing constants of the best joint diophantine approximations from above and below. The first estimate from above was obtained by H. Minkowski in 1896 using the geometry of numbers. H. F. Blichfeldt introducing the concept of the fundamental parallelepiped in 1914 improved the result of H. Minkowski. Later the approach of H. F. Blichfeldt received development in the works of P. Mullender, W. G. Spohn, W. G. Nowak.
Keywords: history of mathematics, best joint Diophantine approximations, geometry of numbers, star bodies, critical determinants.
@article{CHEB_2018_19_2_a27,
     author = {Yu. A. Basalov},
     title = {On the history of estimates of the constant of the best joint diophanite approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {389--406},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/}
}
TY  - JOUR
AU  - Yu. A. Basalov
TI  - On the history of estimates of the constant of the best joint diophanite approximations
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 389
EP  - 406
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/
LA  - ru
ID  - CHEB_2018_19_2_a27
ER  - 
%0 Journal Article
%A Yu. A. Basalov
%T On the history of estimates of the constant of the best joint diophanite approximations
%J Čebyševskij sbornik
%D 2018
%P 389-406
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/
%G ru
%F CHEB_2018_19_2_a27
Yu. A. Basalov. On the history of estimates of the constant of the best joint diophanite approximations. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 389-406. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a27/

[1] Adams W. W., “Simultaneous Diophantine approximations and cubic irrationals”, Pacific journal of mathematics, 30:1 (1969), 1–14 | DOI | MR | Zbl

[2] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrtionals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | DOI | MR

[3] Basalov Yu. A., On estimating the constant of simultaneous Diophantine approximation, 15.04.2018, arXiv: (data obrascheniya: 05.05.2018) 1804.05385 | Zbl

[4] Bernstein L., “A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8”, Journal of Number Theory, 4:1 (1972), 48–69 | DOI | MR | Zbl

[5] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | DOI | MR | Zbl

[6] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl

[7] Cusick J. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | DOI | MR | Zbl

[8] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | DOI | MR | Zbl

[9] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl

[10] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95

[11] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Akademie Notiz. Exhib., 1775, August 14; Commentationes arithmeticae collectae, v. II, 1849, 99–104

[12] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | DOI | MR

[13] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | DOI | MR | Zbl

[14] Hunter J., “The minimum discriminant of quintic fields”, Proc. Glasgow Math. Assoc., 3 (1957), 57–67 | DOI | MR | Zbl

[15] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationale Briiche”, Math. Ann., 39 (1891), 279–284 | DOI | MR

[16] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchenjede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 ; Gesammelte Werke, v. IV, 1891, 385–426 | MR

[17] J. Koksma, Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles. I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Sect. Sci., 45 (1942), 256–262 ; 354–359; 471–478 ; 578–584 | MR | MR | MR

[18] Krass S., “Estimates for $n$-dimensional Diophantine approximation constants for $ n \geq 4 $”, J. Number Theory, 20:2 (1985), 172–176 | DOI | MR | Zbl

[19] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | DOI | MR | Zbl

[20] M. Lanker, P. Petek, M. S. Rugeji, The continued fractions ladder of specific pairs of irrationals, 30.07.2011, arXiv: (data obrascheniya: 05.05.2018) 1108.0087

[21] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | DOI | MR | Zbl

[22] Mayer J., “Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkorper”, S. B. Akad. Wiss. Wien Abt. Ila, 138 (1929), 733–742 | Zbl

[23] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896 | MR

[24] Mordell L., “Lattice points in some n-dimensional non-convex regions. I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781 ; 782–792 | MR | Zbl

[25] Mullender P., “Lattice points in non-convex regions. I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl

[26] Murru N., On the Hermite problem for cubic irrationaliti, 16.01.2014, arXiv: (data obrascheniya: 05.05.2018) 1305.3285

[27] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | DOI | MR | Zbl

[28] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl

[29] Perron O., “Grundlagen fur eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR | Zbl

[30] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl

[31] Szekers G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | DOI | MR

[32] Woods A. C., “The asymetric product of three homogenous linear forms”, Pacific J. Math., 93 (1981), 237–250 | DOI | MR | Zbl

[33] A. D. Bruno, “Algorithm of the generalized continued fraction”, Keldysh Institute preprints, 2004, 45, 27 pp.

[34] A. D. Bruno, “Структура наилучших диофантовых приближений”, Reports of the Academy of Sciences, 402:4 (2005), 439–444 | MR | Zbl

[35] A. D. Bruno, “Algorithm of the generalized continued fraction”, Reports of the Academy of Sciences, 402:6 (2005), 732–736 | MR | Zbl

[36] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Mir, 1965 | MR

[37] N. G. Moshchevitin, “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239, 2002, 268–274

[38] W. M. Schmidt, Diophantine Approximation, Mir, 1983 | MR

[39] A Database for Number Fields. A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/