N. M. Korobov and the theory of the hyperbolic zeta function of lattices
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 341-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the study of the role Of N. M. Korobova in the development of the number-theoretic method in the approximate analysis.One of the Central places in the numerical-theoretical method in the approximate analysis is the method of optimal coefficients. The first example of a hyperbolic Zeta function of lattices appeared in the works of N. M. Korbova and N. S. bakhvalova in 1959 as an evaluation of integration error on the class $E_s^\alpha$ using quadrature formulas constructed on parallelepiped grids.In this paper, 5 stages-directions in the theory of hyperbolic Zeta function of lattices are distinguished.First, it is the stage of formation of the General theory, which historically occupies the period from 1959 to 1990. During this period, the theory of quadrature formulas with generalized parallelepiped grids was constructed and it was shown that the error rate of the approximate integration on the class $E_s^\alpha$ is either equal to the hyperbolic Zeta function of lattices, the case of an integer lattice, or is estimated from above through it in the case of an arbitrary lattice.The second stage began in the mid-90s, when a new direction of research of the hyperbolic Zeta function of lattices as a function of the complex argument $\alpha=\sigma+it$ on the metric space of lattices appeared. This direction continues to develop to the present time.The next stage, which also began in the mid-90s, was related to the consideration of the generalized hyperbolic Zeta function of lattices, or in other words, the hyperbolic Zeta function on the folded lattices.The fourth stage, which became an independent direction of research, began in the late 90s, in the early 2000s. It is related to the question of obtaining a functional equation for the analytic continuation of the hyperbolic Zeta function of lattices.Finally, the last new direction of this theory logically emerged from the previous ones is connected with the study of Zeta functions of monoids of natural numbers.The paper reveals the defining role of Professor N. M. Korobova in the formation and development of the theory of hyperbolic Zeta function of lattices.
Keywords: a number-theoretic method in approximate analysis, a hyperbolic lattice Zeta function.
@article{CHEB_2018_19_2_a24,
     author = {I. Yu. Rebrova and A. V. Kirilina},
     title = {N. {M.} {Korobov} and the theory of the hyperbolic zeta function of lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {341--367},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a24/}
}
TY  - JOUR
AU  - I. Yu. Rebrova
AU  - A. V. Kirilina
TI  - N. M. Korobov and the theory of the hyperbolic zeta function of lattices
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 341
EP  - 367
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a24/
LA  - ru
ID  - CHEB_2018_19_2_a24
ER  - 
%0 Journal Article
%A I. Yu. Rebrova
%A A. V. Kirilina
%T N. M. Korobov and the theory of the hyperbolic zeta function of lattices
%J Čebyševskij sbornik
%D 2018
%P 341-367
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a24/
%G ru
%F CHEB_2018_19_2_a24
I. Yu. Rebrova; A. V. Kirilina. N. M. Korobov and the theory of the hyperbolic zeta function of lattices. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 341-367. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a24/

[1] Bakhvalov, N. S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[2] Z. I. Borevich, I. R. Shafarevich, Number theory, Science, M., 1985, 507 pp. | MR

[3] Bykovskij V. A., About the right order of error of optimal cubature formulas in space with dominating derivative and quadratic deviations of grids, Preprint, DVNTS AN SSSR, Vladivostok, Russia, 1985 | Zbl

[4] Bykovskij V. A., Extremal cubature formulas for anisotropic classes, Preprint, Khabarovsk, Russia, 1995, 13 pp.

[5] Voronin S. M., “On quadrature formulas”, Izvestiya Rossijskoj akademii nauk, Seriya matematicheskaya, 58:5 (1994), 189–194

[6] Voronin S. M., “About the construction of quadrature formulas”, Izvestiya Rossijskoj akademii nauk, Seriya matematicheskaya, 59:4 (1995) | DOI | MR | Zbl

[7] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fiz-matlit, M., 1994, 376 pp. | MR

[8] Voronin S. M., Temirgaliev N., “On quadrature formulas associated to divisors of the field of Gaussian numbers”, Matematicheskie zametki, 46:2 (1989), 34–41 | Zbl

[9] Hecke E., Lectures on the theory of algebraic numbers, Gostekhizdat, M.–L., 1940

[10] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrov, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4(64) (2017), 6–85 | DOI | MR | Zbl

[11] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients, Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im L.N. Tolstogo, Tula, Russia, 2012

[12] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107 | Zbl

[13] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl

[14] Dobrovol'skii M. N., “Estimates of sums over a hyperbolic cross”, Izvestie Tul'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[15] Dobrovol'skii M. N., “The optimum coefficients of the combined meshes”, Chebyshevskij sbornik, 5:1 (9) (2004), 95–121 | MR | Zbl

[16] Dobrovol'skii M. N., “Dirichlet series with periodic coefficients and a functional equation for hyperbolic dzeta-function of integer lattices”, Chebyshevskij sbornik, 3:2 (4) (2006), 43–59 | MR | Zbl

[17] Dobrovol'skii M. N., “Functional equation for hyperbolic dzeta-function of integer lattices”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[18] Dobrovol'skii M. N., “Functional equation for hyperbolic dzeta-function of integer lattices”, Vestnik Moskovskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Mekhanika, 2007, no. 3, 18–23 | Zbl

[19] Dobrovol'skii M. N., Some number-theoretic methods of approximate analysis, Ph.D. Thesis, Moscow State University, Moscow, Russia, 2009

[20] Dobrovol'skii N. M., “An effective proof of Roth's quadratic deviation theorem”, Uspekhi matematicheskikh nauk, 39(123) (1984), 155–156 | Zbl

[21] Dobrovol'skii N. M., Estimates of variance of modified grids Hammersly Rota, Dep. v VINITI, No 1365-84, 1984

[22] Dobrovol'skii N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089-84, 1984

[23] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84, 1984

[24] Dobrovol'skii N. M., On quadrature formulas in classes $E^\alpha_s(c)$ and $H^\alpha_s(c)$, Dep. v VINITI, No 6091-84, 1984

[25] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Ph.D. Thesis, Tula, Russia, 1984 | Zbl

[26] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Abstract of Ph.D. dissertation, Moscow State Pedagogical University, M., Russia, 1985

[27] Dobrovol'skii N. M., “Number-theoretic meshes and their applications”, Teoriya chisel i ee prilozheniya, Tezisy dokladov Vsesoyuznoj konferentsii (Tbilisi, USSR), 1985, 67–70 | MR

[28] Dobrovol'skii N. M., Multidimensional number-theoretic grids and lattices and their applications, D.Sc. Thesis, Tula State Pedagogical University, Tula, Russia, 2000

[29] Dobrovol'skii N. M., Multidimensional number-theoretic grids and lattices and their applications, Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta imeni L. N. Tolstogo, Tula, Russia, 2005

[30] Dobrovol'skii N. M., “On modern problems of the theory of hyperbolic Zeta function of lattices”, Chebyshevskij sbornik, 16:1 (2015), 176–190 | MR | Zbl

[31] Dobrovol'skii N. M., Van'kova V. S., Kozlova S. L., The hyperbolic Zeta function of algebraic lattices, Dep. v VINITI, No 2327-B90, 1990

[32] Dobrovol'skii N. M., Dobrovol'skii N. N., Sobolev D. K. Soboleva V. N., “Classification of pure-real algebraic irrationalities”, Chebyshevskij sbornik, 18:2 (2017), 98–128 | DOI | MR | Zbl

[33] Dobrovol'skii N. M., Dobrovol'skii N. N., Sobolev D. K., Soboleva V. N., Dobrovol'skaya L. P., Bocharova O. E., “On the hyperbolic Hurwitz Zeta function”, Chebyshevskij sbornik, 17:3 (2016), 72–105 | DOI | MR | Zbl

[34] Dobrovol'skii N. M., Dobrovol'skii N. N., Soboleva V. N., Sobolev D. K., Yushina E. I., “Hyperbolic dzeta-function of lattices of quadratic fields”, Chebyshevskij sbornik, 16:4 (2015), 100–149 | MR | Zbl

[35] Dobrovol'skii N. M., Korobov N. M., “The optimal coefficients for mixed meshes”, Chebyshevskij sbornik, 2 (2001), 41–53 | MR | Zbl

[36] Dobrovol'skii N. M., Korobov N. M., “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, 3:1 (3) (2002), 41–48 | MR | Zbl

[37] Dobrovol'skii N. M., Rebrova I. Yu., Roshhenya A. L., “Continuity of the hyperbolic Zeta function of lattices”, Matematicheskie zametki, 63:4 (1998), 522–526 | DOI | MR

[38] N. M. Dobrovolsky, I. Y. Rebrov, A. E. Ustyan, F. V. Podsypanin, E. V. Podsypanin, “Tula school of number theory (to the 105-th anniversary of Vladimir Dmitrievich Podsypanina (16.01.1910–11.10.1968) and the 65th anniversary of the Tula school of number theory)”, Algebra, number theory and discrete geometry: contemporary issues and applications proceedings of the XIII International conference, Tula state pedagogical University. L. N. Tolstoy, 2015, 20–85 | MR

[39] Dobrovol'skii N. M., Roshhenya A. L., “On the number of lattice points in a hyperbolic cross”, Algebraic, probabilistic, geometric, combinatorial and functional methods in number theory, Proceedings of the II international conference (Voronezh, Russia), 1995, 53 | MR

[40] Dobrovol'skii N. M., Roshhenya A. L., “On the analytic continuation of the hyperbolic Zeta function of rational lattices”, Modern problems of number theory and its applications, Proceedings of the III international conference (Tula, Russia), 1996, 49 | Zbl

[41] Dobrovol'skii N. M., Roshhenya A. L., “On continuity of the hyperbolic Zeta function of lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[42] Dobrovol'skii N. M., Roshchenya A. L., “On the number of points in a lattice in a hyperbolic cross”, Math. Notes, 63:3–4 (1998), 319–324 | DOI | DOI | MR

[43] Dobrovol'skii N. N., “Deviation of two-dimensional Smolyak grids”, Chebyshevskij sbornik, 8:1 (21) (2007), 110–152 | MR | Zbl

[44] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR

[45] N. N. Dobrovolsky, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1 (2018), 79–105 | DOI | MR

[46] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl

[47] Dz. Kassel, An introduction to the geometry of numbers, Translated from the English by A. N. Andrianov and I. V. Bogacenko, ed. A. V. Malyshev, Izdat. “Mir”, M., 1965, 421 pp. (Russian) | MR

[48] Korobov N. M., “Approximate evaluation of multiple integrals by using methods of the theory of numbers”, Doklady Akademii nauk SSSR, 115:6 (1957), 1062–1065

[49] Korobov N. M., “On approximate computation of multiple integrals”, Doklady Akademii nauk SSSR, 124:6 (1959), 1207–1210 | Zbl

[50] Korobov N. M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[51] Korobov N. M., On number-theoretic methods in approximate analysis, Mashgiz, M., Russia, 1963

[52] Korobov N. M., “Quadrature formulas with combined grids”, Matematicheskie zametki, 55:2 (1994), 83–90 | MR | Zbl

[53] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., Russia, 1963

[54] N. M. Korobov, “On some properties of special polynomials”, Chebyshevskii Sb., 1:1 (2001), 40–49 | Zbl

[55] N. M. Korobov, N. M. Dobrovolskii, “Kriterii optimalnosti i algoritmy poiska optimalnykh koeffitsientov”, Chebyshevskii sbornik, 8:4(24) (2007), 105–128 | Zbl

[56] E. M. Rarova, “Weighted number of points of algebraic net”, Chebyshevskii Sb., 19:1 (2018), 200–219 | DOI | MR | Zbl

[57] Rebrova I. Yu., “Continuity of the generalized hyperbolic lattice Zeta function and its analytic continuation”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 99–108 | MR

[58] I. Yu. Rebrova, “N. M. Korobov i Tulskaya shkola teorii chisel”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XV Mezhdunar. konf., posvyaschennoi stoletiyu so dnya rozhdeniya professora Nikolaya Mikhailovicha Korobova, TGPU im. L. N. Tolstogo, Tula, 2018, 368–371

[59] Roshhenya A. L., “Generalization of Dirichlet's theorem on the number of points of an integer lattice in a hyperbolic cross”, Abstracts of the III international conference: modern problems of number theory, 1996, 120

[60] Roshhenya A. L., A generalization of Dirichlet's theorem on the number of points of a shifted lattice under hyperbole $\,x\cdot y =N$, Dep. v VINITI, No 2743-B-96, 1996

[61] Roshhenya A. L., Generalization of Dirichlet's theorem on the number of points of an integer lattice in a hyperbolic cross, Dep. v VINITI, No 2087-N-97, 1997

[62] Temirgaliev N., “Application of divisor theory to the numerical integration of periodic functions of many variables”, Matematicheskij sbornik, 181:4 (1990), 490–505

[63] Fel'dman N. I., Approximations of algebraic numbers, Moscow Gos. Univ., M., 1981, 200 pp. (Russian)

[64] Frolov K. K., “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Akademii nauk SSSR, 231:4 (1976), 818–821 | MR | Zbl

[65] Frolov K. K., Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel'nyj tsentr Akademii Nauk SSSR, Moscow, USSR, 1979

[66] K. Chandrasekkharan, Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR

[67] L. Dirichlet, “Uber die Bestimmung der mitteleren Werte in der Zahlentheorie”, Abh. Akad. Berlin, 1849, 69–83