Problems of the summation of arithmetical sums, relative to Chebyshev function
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 319-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many problems of Number Theory are connected with investigation of Dirichlet series $f(s)=\sum\limits_{n=1}^{\infty} a_nn^{-s}$ and the adding functions $\Phi(x)=\sum\limits_{n\leq x} a_n$ of their coefficients. The most famous Dirichlet series is the Riemann zeta function $\zeta(s)$, defined for any $s=\sigma+it$ with $\Re s=\sigma> 1$ as $\zeta(s)=\sum\limits_{n=1}^{\infty}\frac{1}{n^s}.$ The square of zeta function $\zeta^{2}(s)=\sum\limits_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \,\, \Re s > 1,$ is connected with the divisor function $\tau (n)=\sum\limits_ { d | n } 1$, giving the number of a positive integer divisors of positive integer number $n$. The adding function of the Dirichlet series $\zeta^2(s)$ is the function $D (x)=\sum\limits_ { n\leq x}\tau(n)$; the questions of the asymptotic behavior of this function are known as Dirichlet divisor problem. Generally, $ \zeta^{k}(s)=\sum\limits_{n=1}^{\infty}\frac{\tau_k(n)}{n^s}, \,\, \Re s > 1, $ where function $\tau_k (n)=\sum\limits_{n=n_1\cdot...\cdot n_k} 1$ gives the number of representations of a positive integer number $n$ as a product of $k$ positive integer factors. The adding function of the Dirichlet series $ \zeta^k (s)$ is the function $D_k (x)=\sum\limits_ { n\leq x}\tau_k(n)$; its research is known as the multidimensional Dirichlet divisor problem. The logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function can be represented as $\frac{\zeta^{'}(s)}{\zeta(s)}=-\sum\limits_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$ $\Re s >1.$ Here $\Lambda(n)$ is the Mangoldt function, defined as $\Lambda(n)=\log p$, if $n=p^{k}$ for a prime number $p$ and a positive integer number $k$, and as $\Lambda(n)=0$, otherwise. So, the Chebyshev function $\psi(x)=\sum\limits_{n\leq x}\Lambda(n)$ is the adding function of the coefficients of the Dirichlet series $\sum\limits_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$, corresponding to logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function. It is well-known in analytic Number Theory and is closely connected with many important number-theoretical problems, for example, with asymptotic law of distribution of prime numbers. In particular, the following representation of $\psi(x)$ is very useful in many applications: $\psi(x)=x-\sum\limits_{|\Im \rho|\leq T}\frac{x^{\rho}}{\rho}+O\left(\frac{x\ln^{2}x}{T}\right), $ where $x=n+0,5$, $n \in\mathbb{N}$, $2\leq T \leq x$, and $\rho=\beta+i\gamma$ are non-trivial zeros of zeta function, i.e., the zeros of $\zeta(s)$, belonging to the critical strip $0 \Re s1$. We obtain similar representations over non-trivial zeros of zeta function for two arithmetic functions, relative to the Chebyshev function: $$\psi_{1}(x)=\sum\limits_{n\leq x}(x-n)\Lambda(n), \, \text{ and } \, \psi_{2}(x)=\sum\limits_{n \leq x}\Lambda(n)\ln\frac{x}{n}.$$ Similar results can be received also for some other functions, related to the Chebyshev function, if to use logarithmic derivatives of Dirichlet $L$-functions.
Keywords: arithmetical functions, Dirichlet series, adding function of the coefficients of a Dirichlet series, the Riemann zeta function, the Chebyshev function, non-trivial zeros of the Riemann zeta function, contour integration.
@article{CHEB_2018_19_2_a22,
     author = {E. I. Deza and L. V. Varukhina},
     title = {Problems of the summation of arithmetical sums, relative to {Chebyshev} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {319--333},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a22/}
}
TY  - JOUR
AU  - E. I. Deza
AU  - L. V. Varukhina
TI  - Problems of the summation of arithmetical sums, relative to Chebyshev function
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 319
EP  - 333
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a22/
LA  - ru
ID  - CHEB_2018_19_2_a22
ER  - 
%0 Journal Article
%A E. I. Deza
%A L. V. Varukhina
%T Problems of the summation of arithmetical sums, relative to Chebyshev function
%J Čebyševskij sbornik
%D 2018
%P 319-333
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a22/
%G ru
%F CHEB_2018_19_2_a22
E. I. Deza; L. V. Varukhina. Problems of the summation of arithmetical sums, relative to Chebyshev function. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 319-333. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a22/

[1] Borevich Z. I., Shafarevich I. R., Theory of numbers, Nauka, M., 1985 | MR

[2] Vinogradov, I. M., Bases of the theory of numbers, Nauka, M., 1981 | MR

[3] Voronin S. M., Karatsuba A. A., Riemann zeta function, Fizmatlit, M., 1994 | MR

[4] Karatsuba A. A., “Uniform estimate of error term in Dirichlet divisor problem”, Izv. Acad. of Sci. SSSR, Math., 36:3 (1972), 475–483 | Zbl

[5] Karatsuba, A. A., Bases of the analytical theory of numbers, Nauka, M., 1983 | MR

[6] Panteleeva (Deza) E. I., “Dirichlet divisor problem in number fields”, Mathematical notes, 44:4 (1988), 494–505 | Zbl

[7] Panteleeva (Deza) E. I., “A remark to Divisor problem”, Mathematical notes, 53:4 (1993), 148–152 | Zbl

[8] Panteleeva (Deza) E. I., “Average values of some arithmetic functions”, Mathematical notes, 55:5 (1994), 7–12

[9] Panteleeva (Deza) E. I., “Dirichlet divisor problem in the ring of the Gaussian integers”, Works of MPGU, 2001, no. 4, 23–34

[10] Panteleeva (Deza) E. I.,Varukhina L. V., “Estimations of adding function of Dirichlet series”, Scientific works of mathematical department of MPGU, MPGU, M., 2000, 45–56

[11] Panteleeva (Deza) E. I., Varukhina L. V., “"On estimation of zeta sums and Dirichlet divisor problem”, Issue of St. Petersburg University, Series 1, 2013, no. 4, 15–24

[12] Prahar K., Distribution of prime numbers, Mir, M., 1967

[13] Titchmarsh E. K., The theory of the Riemann zeta function, IL, M., 1953

[14] Titchmarsh E. K., The theory of functions, Nauka, M., 1980

[15] A. Iviĉ, The Riemann zeta-function, J. Wiley Sons, New Jork, 1985 | MR | Zbl

[16] E. I. Panteleeva (Deza), L. V. Varukhina, “On mean values of some arithmetic functions in number fields”, Discrete Mathematics, 308 (2008), 4892–4899 | DOI | MR | Zbl