Weakly invertible $ n $-quasigroups
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 304-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the $ n $-quasigroups $ (n \geqslant3) $ with the following property weak invertibility. If on any two sets of $ n $ arguments with the equal initials, equal ends, but with different middle parts (of the same length), the result of the operation is the same, then for any identical beginnings (of a other length), with the previous middle parts and for any identical ends (the corresponding length), the result of the operation will be the same. For such $ n $-quasigroups An analog of the Post-Gluskin-Hoss theorem is proved, which reduces the operation of an $ n $-quasigroup to a group one. The representation of the $ n $-quasigroup operation proved by the theorem with the help of the automorphism of the group turned out to occur in weaker (and quite natural) assumptions, rather than the associativity and $ (i, j) $-associativity required earlier. Well-known $ (i, j) $-associative $ n $-quasigroups satisfy the condition of weak invertibility.
Keywords: $ n $-quasigroup, $ (i, j) $-associativity, group automorphism, Post–Gluskin–Hoss theorem.
@article{CHEB_2018_19_2_a21,
     author = {F. M. Malyshev},
     title = {Weakly invertible $ n $-quasigroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {304--318},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Weakly invertible $ n $-quasigroups
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 304
EP  - 318
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/
LA  - ru
ID  - CHEB_2018_19_2_a21
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Weakly invertible $ n $-quasigroups
%J Čebyševskij sbornik
%D 2018
%P 304-318
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/
%G ru
%F CHEB_2018_19_2_a21
F. M. Malyshev. Weakly invertible $ n $-quasigroups. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 304-318. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/

[1] Kurosh A. G., Gentral algebra. Lectures 1969–1970 academic year, Nauka, M., 1974, 160 pp. (Russian)

[2] Belousov V. D., n-quasigroups, Shtinitsa, Kishinev, 1972, 225 pp. (Russian)

[3] Galmak A. M., n-groups, v. 1, State University F. Skorina, Gomel, 2003, 196 pp. (Russian)

[4] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[5] Gluskin L. M., “Positional Operatives”, Mat. Sb., 68(110):3 (1965), 444–472 | Zbl

[6] M. Hosszu, “On the explicit form on n-group operations”, Publ. Math., 10:1–4 (1963), 87–92 | MR

[7] A. M. Galmak, G. N. Vorobjov, “About the Post-Gluskin-Hoss theorem”, Problems of physics, mathematics and engineering, 2013, no. 1(14), 55–60 | Zbl

[8] F. N. Sokhatsky, “On the associativity of multi-local operations”, Diskret. Mat., 4:1 (1992), 67–84 | MR

[9] Sohatsky F. N., Associatives and expansions of multi-site operations, Diss. Doct. fiz. mat. sciences, Kiev, 2006, 334 pp.

[10] Galmak A. M., Shchuchkin N. A., “Generating sets of n-groups”, Chebyshevsky sb., 15:1 (2014), 89–109 | MR | Zbl

[11] Khodabandeh H., Shahryari M., “Simple polyadic groups”, SMRJ, 55:4 (2014), 898–911 | MR

[12] Shchuchkin N. A., “The structure of finite semi-abelian n-ary groups”, Chebyshevsky sb., 17:1 (2016), 254–269 | MR

[13] Malyshev F. M., “The Post–Gluskin–Hoss theorem for finite n-quasigroups and self-invariant families of permutations”, Sb. Math., 207:2 (2016), 226–237 | DOI | DOI | MR | Zbl

[14] Galmak A. M., Rusakov A. D., “On a polyadic operation of a special form”, Ves. Nat. Acad. Sci. Belarusian. Ser. fiz. math. sciences, 2017, no. 2, 44–51 | MR

[15] Tyutin, V. I., “On the axiomatics of n-groups”, Dokl. AN BSSR, 29:8 (1985), 691–693 | MR | Zbl

[16] Sokolov E. I., “On the Gluskin-Hoss theorem”, Networks and quasigroups, Mat. Issled., 39, Shtinitsa, Kishinev, 1976, 187–189

[17] Galmak A. M., “On the reducibility of n-groups”, Problems of Algebra, 1996, no. 10, 164–169 | MR | Zbl

[18] Vorobjov V. N., “Conjugate n-ary subgroups and their generalizations”, Vault P.M. Masherava VDU, 1997, no. 2 (4), 59–64

[19] Cheryomushkin, A. V., “Analogues of Gluskin-Hoss and Malyshev theorems for the case of strongly dependent n-operations”, Discret. Mat., 30:2 (2018), 138–147 | DOI

[20] M. Hosszu, “Algebrai rendszereken ertelmezett függvenyegyenletek, I, MTA III”, Oszt. Közlemenyei, 1962, no. 13, 303–315 | MR | Zbl