Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a21, author = {F. M. Malyshev}, title = {Weakly invertible $ n $-quasigroups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {304--318}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/} }
F. M. Malyshev. Weakly invertible $ n $-quasigroups. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 304-318. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a21/
[1] Kurosh A. G., Gentral algebra. Lectures 1969–1970 academic year, Nauka, M., 1974, 160 pp. (Russian)
[2] Belousov V. D., n-quasigroups, Shtinitsa, Kishinev, 1972, 225 pp. (Russian)
[3] Galmak A. M., n-groups, v. 1, State University F. Skorina, Gomel, 2003, 196 pp. (Russian)
[4] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[5] Gluskin L. M., “Positional Operatives”, Mat. Sb., 68(110):3 (1965), 444–472 | Zbl
[6] M. Hosszu, “On the explicit form on n-group operations”, Publ. Math., 10:1–4 (1963), 87–92 | MR
[7] A. M. Galmak, G. N. Vorobjov, “About the Post-Gluskin-Hoss theorem”, Problems of physics, mathematics and engineering, 2013, no. 1(14), 55–60 | Zbl
[8] F. N. Sokhatsky, “On the associativity of multi-local operations”, Diskret. Mat., 4:1 (1992), 67–84 | MR
[9] Sohatsky F. N., Associatives and expansions of multi-site operations, Diss. Doct. fiz. mat. sciences, Kiev, 2006, 334 pp.
[10] Galmak A. M., Shchuchkin N. A., “Generating sets of n-groups”, Chebyshevsky sb., 15:1 (2014), 89–109 | MR | Zbl
[11] Khodabandeh H., Shahryari M., “Simple polyadic groups”, SMRJ, 55:4 (2014), 898–911 | MR
[12] Shchuchkin N. A., “The structure of finite semi-abelian n-ary groups”, Chebyshevsky sb., 17:1 (2016), 254–269 | MR
[13] Malyshev F. M., “The Post–Gluskin–Hoss theorem for finite n-quasigroups and self-invariant families of permutations”, Sb. Math., 207:2 (2016), 226–237 | DOI | DOI | MR | Zbl
[14] Galmak A. M., Rusakov A. D., “On a polyadic operation of a special form”, Ves. Nat. Acad. Sci. Belarusian. Ser. fiz. math. sciences, 2017, no. 2, 44–51 | MR
[15] Tyutin, V. I., “On the axiomatics of n-groups”, Dokl. AN BSSR, 29:8 (1985), 691–693 | MR | Zbl
[16] Sokolov E. I., “On the Gluskin-Hoss theorem”, Networks and quasigroups, Mat. Issled., 39, Shtinitsa, Kishinev, 1976, 187–189
[17] Galmak A. M., “On the reducibility of n-groups”, Problems of Algebra, 1996, no. 10, 164–169 | MR | Zbl
[18] Vorobjov V. N., “Conjugate n-ary subgroups and their generalizations”, Vault P.M. Masherava VDU, 1997, no. 2 (4), 59–64
[19] Cheryomushkin, A. V., “Analogues of Gluskin-Hoss and Malyshev theorems for the case of strongly dependent n-operations”, Discret. Mat., 30:2 (2018), 138–147 | DOI
[20] M. Hosszu, “Algebrai rendszereken ertelmezett függvenyegyenletek, I, MTA III”, Oszt. Közlemenyei, 1962, no. 13, 303–315 | MR | Zbl