Integrals and indicators of subharmonic functions. I
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 272-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of our study, we consider general problems of the theory of density functions and $\rho$-semi-additive functions that are often used in the theory of growth of entire and subharmonic functions and in other branches of mathematics. In the theory of density functions, an important and often quoted theorem is the Polya theorem on the existence of a maximal and minimal density. The assertion 3 of the theorem 6 or the theorem 7 of the paper can be considered as the extension of the Polya theorem to a more general class of functions. The density functions have certain semi-additivity properties. Some problems of the theory of density functions and $\rho$-semi-additive functions are presented in the first part of our study. The central one here is the theorem 23, concerning the conditions for the existence at the zero of the derivative of $\rho$-semi-additivity function and estimation of integrals $ \int\limits_a^bf(t)\,d\nu(t) $ through the density functions of the function $\nu$. We note that the function $\nu$, in general, is not a distribution function of some countably-additive measure, and the integral must be understood as the Riemann-Stieltjes integral, and not as a Lebesgue integral in measure $\nu$.
Keywords: proximate order, density function, maximal and minimal density, Polya theorem, semi-additive function, Riemann-Stieltjes integral.
@article{CHEB_2018_19_2_a20,
     author = {K. G. Malyutin and M. V. Kabanko and T. I. Malyutina},
     title = {Integrals and indicators of subharmonic functions. {I}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {272--303},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a20/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
AU  - T. I. Malyutina
TI  - Integrals and indicators of subharmonic functions. I
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 272
EP  - 303
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a20/
LA  - ru
ID  - CHEB_2018_19_2_a20
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%A T. I. Malyutina
%T Integrals and indicators of subharmonic functions. I
%J Čebyševskij sbornik
%D 2018
%P 272-303
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a20/
%G ru
%F CHEB_2018_19_2_a20
K. G. Malyutin; M. V. Kabanko; T. I. Malyutina. Integrals and indicators of subharmonic functions. I. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 272-303. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a20/

[1] Azarin V. S., “On the asymptotic behavior of subharmonic functions of finite order”, Math. USSR-Sb., 36:2 (1980), 135–154 | DOI | MR | Zbl

[2] Govorov N. V., “On the indicator of functions of non-integer order, analytic and completely regular growth in the half-plane”, Doklady Akademii nauk SSSR, 162:3 (1965), 495–498 | Zbl

[3] Govorov N. V., “On the indicator of functions of integer order, analytic and completely regular growth in the half-plane”, Doklady Akademii nauk SSSR, 172:4 (1967), 763–766 | Zbl

[4] Grishin A. F., “"On regularity of the growth of subharmonic functions. I”, Teor. funktsii, funkts. analiz i ih pril., 6, 1968, 3–29 | Zbl

[5] A. F. Grishin, “On regularity of the growth of subharmonic functions. II”, Teor. funktsii, funkts. analiz i ih pril., 7, 1968, 59–84 | Zbl

[6] Grishin A. F., “On regularity of the growth of subharmonic functions. III”, Teor. funktsii, funkts. analiz i ih pril., 8, 1969, 126–135 | Zbl

[7] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. I”, Mathematical Physics, Analysis and Geometry, 1:2 (1994), 193–215 | MR | Zbl

[8] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. II”, Mathematical Physics, Analysis and Geometry, 2:2 (1995), 177–193 | MR | Zbl

[9] Grishin A. F., Malyutina T. I., “On the proximate order”, Complex analysis and mathematical physics, The Publishing Center of the Krasnoyarsk State University, Krasnoyarsk, 1998, 10–24

[10] A. A. Kondratyuk, “Entire functions with positive zeros having a finite maximum density”, Teor. funktsii, funkts. analiz i ih pril., 7, 1968, 37–52 | Zbl

[11] Levin B. Ya., “On the growth of an entire function along a ray, and the distribution of its zeros with respect to their arguments”, Math. USSR-Sb., 2(44):6 (1937), 1097–1142

[12] Levin B. Ya., Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980 | MR

[13] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | DOI | MR | Zbl

[14] Seneta E., Regularly Varying Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[15] Hille E., Phillips R. S., Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, RI, 1957 | MR

[16] N. H. Bingham, C. M. Goldie, J. L. Tengels, Regular Variation, Cambridge University Press, 1985, 224 pp. | MR

[17] M. A. Fedorov, A. F. Grishin, “Some Questions of the Nevanlinna Theory for the Complex Half-Plane”, Mathematical Physics, Analysis and Geometry, 1:3 (1998), 1–49 | MR

[18] de Haan L., On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Math. Centre Tracts, 32, Amsterdam, 1970 | MR | Zbl

[19] W. Hengartner, R. Theodorescu, Concentration functions, Academic Press, London, 1973, 374 pp. | MR | Zbl

[20] Korevaar H., van Aardenne-Ehrenfest T., de Breijn N. G., “A note on slowly oscillating functions”, Niew. Arch. Wisk., 1949, no. 23, 77–86 | MR | Zbl

[21] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. I”, Comm. Math. Helv., 11 (1938), 180–213 | DOI | MR

[22] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. II”, Comm. Math. Helv., 12 (1939), 25–69 | DOI | MR

[23] Polya G., “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Zeit., 29 (1929), 549–640 | DOI | MR | Zbl

[24] Steinhaus H., “Sur les distances des points de mesure positive”, Fund. Math., 1949, no. 1, 93–104 | DOI