On the history of the fixed point method and the contribution of the soviet mathematicians (1920s--1950s.)
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 30-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Goal. The aim of the paper is studying of Russian mathematicians contribution (V.V. Nemytskii, A.N. Tikhonov, A.A. Markov, M.G. Krein, V.L. Shmul'yan, etc.) to the development of the fixed point method for the period from the beginning 1920's until the late 1950's. Method. The reseach is based on an analysis of the original works of the listed scientists in the context of the worldwide development of nonlinear functional analysis against the backdrop of the achievements of American (J. Birkhoff, O. Kellogg), Polish (S. Banach, S. Mazur, J. Schauder, K. Borsuk, ), Italian (R. Cacciopolli), French (J. Leray) and German (E. Rothe) mathematicians. Result. The contribution of the Soviet scientists in the field of fixed point method is comparable with that of the rest of the world mathematical community in the period under review. This is confirmed both by the number of proved fixed-point theorems and by their quality. Due to the efforts of the Soviet mathematician M.A. Krasnosel'skii from the mid-1950's a fixed point method became a general method for solving a wide class of problems of a qualitative nature for a nonlinear operators analysis (until this time, the method under discussion was considered only as a tool for proving of the solvability of nonlinear integral or differential equations and their systems abstract analogues). Discussion. An analysis of the achievements at the area of the fixed-point method in the global context has shown that the development of nonlinear functional analysis (as, indeed, of any other section of mathematics) is a supranational process that is carried out by the efforts of mathematicians from different countries. This process goes beyond any scientific school, no matter how large it may be.
Keywords: history of nonlinear functional analysis, fixed point method, Schauder theorem, Tikhonov-Schauder theorem, Markov-Kakutani theorem, Leray-Schauder mapping degree, Krasnosel'skii theorem, Krein-Shmuljan theorem, nonlinear integral equations, topological analysis methods.
@article{CHEB_2018_19_2_a2,
     author = {E. M. Bogatov},
     title = {On the history of the fixed point method and the contribution of the soviet mathematicians (1920s--1950s.)},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {30--55},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a2/}
}
TY  - JOUR
AU  - E. M. Bogatov
TI  - On the history of the fixed point method and the contribution of the soviet mathematicians (1920s--1950s.)
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 30
EP  - 55
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a2/
LA  - ru
ID  - CHEB_2018_19_2_a2
ER  - 
%0 Journal Article
%A E. M. Bogatov
%T On the history of the fixed point method and the contribution of the soviet mathematicians (1920s--1950s.)
%J Čebyševskij sbornik
%D 2018
%P 30-55
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a2/
%G ru
%F CHEB_2018_19_2_a2
E. M. Bogatov. On the history of the fixed point method and the contribution of the soviet mathematicians (1920s--1950s.). Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 30-55. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a2/

[1] E. M. Bogatov, “Iz istorii metoda nepodvizhnoi tochki”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XV mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professora Nikolaya Mikhailovicha Korobova (28-31 maya 2018), TGPU im L. N. Tolstogo, Tula, 2018, 317–320

[2] J. Dieudonné, History of functional analysis, North-Holland publishing company, Amsterdam, 1981, 316 pp. | MR | Zbl

[3] J. Dieudonné, A history of algebraic and differential topology 1900–1960, Modern Birkhäuser, Boston, 1989, xxi+648 pp. | MR

[4] R. F. Brown, “Fixed point theory”, History of topology, ed. I.M. James, North-Holland publishing company, Amsterdam, 1999, 271–299 | DOI | MR

[5] S. Park, “Eighty years of the Brouwer fixed point theorem”, Antipodal Points and Fixed Points, Lect. Notes Ser., 28, eds. J. Jaworowski, W. A. Kirk, S. Park, 1995, 55–97 | MR

[6] J. Mawhin, “Leray-Schauder Degree: A half century of extension and applications”, Topological Methods in Nonlinear Analysis, 14 (1999), 195–228 | DOI | MR | Zbl

[7] A. Granas, J. Dugundji, Fixed point theory, Monographs in Mathematics, Springer, New York, 2003, 690 pp. | DOI | MR | Zbl

[8] A. Asati, A. Singh, C. L. Parihar, “127 Years of fixed point theory "A Brief Survey of development of fixed point theory”, International Journal Publications of Problems and Applications in Engineering Research, 4:1 (2013), 34–39

[9] S. Kumar, “A short survey of the development of fixed point heory”, Surveys in Mathematics and its Applications, 8 (2013), 91–101 | MR | Zbl

[10] V. H. Badshah, V. H. Tiwari, Aheere Dheeraj, “A short note on some spaces and fixed point theory”, Journal of scientific research in physical mathematical sciences, 1:1 (2014), 1–7

[11] Bogatov E. M., “On the history of the method of a fixed point and the contribution of domestic mathematicians”, Proc. Annual scientific conference dedicated to the 85th anniversary of the INHT RAS, M., 2017, 121–125

[12] Bogatov E. M., “On the development of qualitative methods for nonlinear equations solving and some consequences”, Izv. VUZ. Applied Nonlinear Dynamics, 23:6 (2018)

[13] Aleksandrov P. S., “Poincaré and topology”, Russian Math. Surveys, 27:1 (1972), 157–168 | DOI | MR | Zbl | Zbl

[14] L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Mathematische Annalen, 70 (1911), 161–165 | DOI | MR | Zbl

[15] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Mathematische Annalen, 71 (1912), 97–115 | DOI | MR | Zbl

[16] Boss V., Lectures on mathematics, v. 13, Topology, 3-d ed., LENAND, M., 2014, 216 pp. (in Russian)

[17] Bohl P., Collection of works, Trans. from the German I.M. Rabinovich, Introd. article and comment. L. E. Reizihn and I. A. Henihn, ed. L.E. Reizihn, Latvia Acad. of Sciences, Inst. of Physics, Latv. Department of the All-Union Astronomical Geodes. society, Zinatne, Riga, 1974, 517 pp. (in Russian) | MR

[18] H. Hopf, “Abbildungklassen $n$-dimensionalen Mannigfaltigkeiten”, Mathematische Annalen, 96:1 (1927), 209–224 | DOI | MR

[19] M. Bernkopf, “The development of function spaces with particular reference to their origins in integral equation theory”, Archive for History of Exact Sciences, 3 (1966), 1–96 | DOI | MR | Zbl

[20] A. Pietsch, History of Banach spaces and linear operators, Birkhäuser Basel, Boston, 2007, 855 pp. | MR | Zbl

[21] G. D. Birkhoff, O. D. Kellogg, “Invariant points in function space”, Transactions of the American Mathematical Society, 23 (1922), 95–115 | DOI | MR

[22] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations integrals”, Fundamenta Mathematicae, 3 (1922), 133–181 | DOI | MR | Zbl

[23] R. Duda, Pearls from a Lost City: The Lvov School of Mathematics, Translated by Daniel Davies, American Mathematical Society, Providence, R.I., 2014, xi+231 pp. | MR | Zbl

[24] J. Schauder, “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Mathematische Zeitschrift, 26:1 (1927), 47–65 | DOI | MR | Zbl

[25] Mathematics: Science in the USSR for fifteen years (1917–1932), GTTI, M.–L., 1932, 239 pp. (in Russian)

[26] J. Schauder, “Bemerkungen zu meiner Arbeit “Zur Theorie stetiger Abbildungen in Funktionalrümen””, Mathematische Zeitschrift, 26:1 (1927), 417–431 | DOI | MR | Zbl

[27] J. Schauder, “Invarianz des Gebietes in Funktionalräumen”, Studia Mathematica, 1.1 (1929), 123–139 | DOI | Zbl

[28] J. Schauder, “Der Fixpunktsatz in Funktionalräumen”, Studia Mathematica, 2 (1930), 171–180 | DOI | Zbl

[29] R. Caccioppoli, “Sugli elementi uniti delle trasformazioni funzionali: un teorema di esistenza e di unicità ed alcune sue applicazioni”, Rendiconti del Seminario Matematico della Università di Padova, 3 (1932), 1–15

[30] J. Mawhin, “Boundary value problems for nonlinear ordinary differential equations: from successive approximations to topology”, Development of Mathematics 1900–1950, Luxembourg, 1992, 443–477 | MR

[31] C. Sbordone, “Renato Caccioppoli, nel centenario della nascita”, Bollettino dell' Unione Matematica Italiana. A, 2 (2004), 193–214 | MR | Zbl

[32] R. S. Ingarden, “Juliusz Schauder personal reminiscences”, Topological Methods in Nonlinear Analysis, 2:1 (1993), 1–14 | DOI | MR | Zbl

[33] Niemytzki V., “Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires”, Mat. Sb., 41:3 (1934), 421–452

[34] Niemytzki V. V., “Fixed-point method in analysis”, Uspekhi Mat. Nauk, 1936, no. 1, 141–174 | Zbl

[35] R. Caccioppoli, “Un teorema generale sull'esistenza di elementi uniti in una trasformazione funzionale”, Rendiconti. Accademia Nazionale dei Lincei, 11 (1930), 794–799 | Zbl

[36] Bogatov E. M., “About the history of development of nonlinear integral equations in the USSR. Strong nonlinearities”, Belgorod State University Sci. Bull. Math. Phys., 2017, no. 6(46), 93–106 (in Russian)

[37] Krasnosel'skii M. A., “Two remarks on the method of successive approximations”, Uspekhi Mat. Nauk, 10:1 (63) (1955), 123–127 | MR

[38] A. Tychonoff, “Ein Fixpunktsatz”, Mathematische Annalen, 111 (1935), 767–776 | DOI | MR

[39] J. von Neumann, “On complete topological spaces”, Transactions of the American Mathematical Society, 37:1 (1935), 1–20 | DOI | MR

[40] G. Köthe, “Stanislaw Mazur's contributions to functional analysis”, Mathematische Annalen, 277 (1987), 489–528 | DOI | MR | Zbl

[41] G. Köthe, O. Toeplitz, “Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen”, Journal für die reine und angewandte Mathematik, 171 (1934), 193–226 | MR

[42] R. Daniel Mauldin (ed.), The Scottish Book: Mathematics from the Scottish Cafe, Birkhäuser, Boston, 1981, 280 pp. | MR | Zbl

[43] R. Cauty, “Rétractes absolus de voisinage algébriques”, Serdica Mathematical Journal, 31:4 (2005), 309–354 | MR | Zbl

[44] Markov A. A., “Some theorems on Abelian sets”, DAN SSSR, 1(X):8 (1936), 299–302

[45] S. Kakutani, “Two fixed-point theorems concerning bicompact convex sets”, Proceedings of the Imperial Academy, 14:7 (1938), 242–245 | DOI | MR

[46] Bogatov E. M., Mukhin R. R., “The averaging method, a pendulum with a vibrating suspension: N.N. Bogolyubov, A. Stephenson, P.L. Kapitza and others”, Izv. VUZ. Applied Nonlinear Dynamics, 25:5 (2017), 69–87

[47] S. Park, “Ninety years of the Brouwer fixed point theorem”, Vietnam Journal of Mathematics, 27:3 (1999), 187–222 | MR | Zbl

[48] M. M. Day, “Fixed-point theorems for compact convex sets”, Illinois Journal of Mathematics, 5:4 (1961), 585–590 | DOI | MR | Zbl

[49] S. Mazur, “Über konvexe Mengen in linearen normierten Räumen”, Studia Mathematica, 4 (1933), 70–84 | DOI

[50] S. Mazur, “Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält”, Studia Mathematica, 2:1 (1930), 7–9 | DOI | MR | Zbl

[51] M. G. Krein, V. L. Šmulian, “On regularly convex sets in the space conjugate to a Banach space”, Annals of Mathematics, 41 (1940), 556–583 | DOI | MR

[52] S. Banach, Théorie des operations linéaires, v. I, Monografje Matematyczne, Warszawa, 1932, 231 pp.

[53] Krein M. G., Lyusternik L. A., “Functional analysis”, Coll. Mathematics in the USSR for 30 years. (1917–1947), Gostekhizdat, M.–L., 1948, 608–673

[54] T. J. Morrison, Functional analysis. An introduction to Banach space theory, John Wiley and Sons., New York, 2001, 376 pp. | MR

[55] Z. Denkowski, S. Migórski, N. S. Papageorgiou, An introduction to nonlinear analysis: theory, Kluwer Academic/Plenum Publishers, Boston, 2003, 683 pp. | MR | Zbl

[56] J. Leray, J. Schauder, “Topologie et équations fonctionnelles”, Annales scientifiques de l'École normale supérieure, 61 (1934), 45–73 | DOI | MR

[57] J. Leray, J. Schauder, “Topology and functional equations”, Uspekhi Mat. Nauk, 1:3–4 (13–14) (1946), 71–95 | MR

[58] E. Rothe, “Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen”, Compositio Mathematica, 5 (1938), 177–197 | MR

[59] M. A. Krasnosel'skii, “On a topological method in the problem of eigenfunctions of nonlinear operators”, DAN SSSR, 74:1 (1950), 5–8

[60] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, Oxford, 1964, 395 pp. | MR | MR | Zbl

[61] M. A. Krasnosel'skii, “Some problems of nonlinear analysis”, Uspekhi Mat. Nauk, 9:3(61) (1954), 57–114 | MR

[62] K. Borsuk, “Drei Sätze Über die n-dimensionale euklidische Sphäre”, Fundamenta Mathematicae, 20:1 (1933), 177–190 | DOI | MR

[63] J. Matoušek, Using the Borsuk-Ulam theorem: lectures on topological methods in combinatorics and geometry, Springer Science Business Media, Berlin, 2008, 214 pp. | Zbl

[64] M. A. Krasnosel'skii, “On a fixed-point principle for completely continuous operators in function spaces”, DAN SSSR, 73:1 (1950), 13–15

[65] J. Mawhin, “Jean Leray and nonlinear integral equations: a partially forgotten legacy”, Journal of Fixed Point Theory and Applications, 1:2 (2007), 159–187 | DOI | MR | Zbl

[66] E. M. Bogatov, R. R. Mukhin, “About the history of nonlinear integral equations”, Izv. VUZ. Applied Nonlinear Dynamics, 24:2 (2016), 77–114

[67] In memory of M. A. Krasnosel'skii, 2018 (accessed 10 June 2018)

[68] Mitropol'skii Yu. A., Strok V. V. (compilers), Institute of Mathematics of the Ukrainian Academy of Sciences, ed. Mitropol'skii Yu. A., Naukova Dumka, Kiev, 1988, 176 pp. | MR

[69] Krasnosel'skii M. A., “Study of the spectrum of a nonlinear operator in the neighborhood of a point of bifurcation and applications to the problem of longitudinal bending of a compressed rod”, Uspekhi Mat. Nauk, 12:1 (73) (1957), 203–208 | MR

[70] Krasnosel'skii M. A., “The eigenfunctions of nonlinear operators asymptotically close to linear operators”, DAN SSSR, 74:2 (1950), 177–179 | MR

[71] Mawhin J., “Mark A. Krasnosel'skii and nonlinear analysis: a fruitful love story”, Coll. Mark Mark Aleksandrovich Krasnose'lskii. To the 80th anniversary of his birth, Digest of articles, IITP RAS, 2000, 80–97

[72] Bogolyubov N. N. and others, “Mark Alexandrovich Krasnosel'skii (on his seventieth birthday)”, Russian Math. Surveys, 45:2 (1990), 231–234 | DOI | MR

[73] E. M. Bogatov, “Key moments of the mutual influence of the Polish and Soviet schools of nonlinear functional analysis in the 1920's-1950's”, Antiquitates Mathematicae, 11:1 (2017), 131–156 | MR | Zbl

[74] S. Park, D. H. Tan, “Remarks on the Schauder-Tychonoff fixed point theorem”, Vietnam Journal of Mathematics, 28:2 (2000), 127–132 | MR | Zbl

[75] Collatz L., Funktionalanalysis und numerische Mathematik, Springer-Verlag, Berlin, 2013, 371 pp. | MR