A characterization of Fibonacci numbers
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 259-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the early Pythagoreans, in perfect agreement with their philosophical-mathematical thought, given segments $s$ and $t$ there was a segment $u$ contained exactly $n$ times in $s$ and $m$ times in $t$, for some suitable integers $n$ and $m$. In the sequel, the Pythagorean system is been put in crisis by their own discovery of the incommensurability of the side and diagonal of a regular pentagon. This fundamental historical discovery, glory of the Pythagorean School, did however “ forget” the research phase that preceded their achievement. This phase, started with numerous attempts, all failed, to find the desired common measure and culminated with the very famous odd even argument, is precisely the object of our “creative interpretation” of the Pythagorean research that we present in this paper: the link between the Pythagorean identity $b(b+a)-a^2=0$ concerning the side $b$ and the diagonal $a$ of a regular pentagon and the Cassini identity $F_{i}F_{i+2}-F_{i+1}^2=(-1)^{i}$, concerning three consecutive Fibonacci numbers, is very strong. Moreover, the two just mentioned equations were “almost simultaneously” discovered by the Pythagorean School and consequently Fibonacci numbers and Cassini identity are of Pythagorean origin. There are no historical documents (so rare for that period!) concerning our audacious thesis, but we present solid mathematical arguments that support it. These arguments provide in any case a new (and natural!) characterization of the Fibonacci numbers, until now absent in literature.
Keywords: incommensurability, golden ratio, Fibonacci numbers.
@article{CHEB_2018_19_2_a19,
     author = {G. Pirillo},
     title = {A characterization of {Fibonacci} numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a19/}
}
TY  - JOUR
AU  - G. Pirillo
TI  - A characterization of Fibonacci numbers
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 259
EP  - 271
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a19/
LA  - en
ID  - CHEB_2018_19_2_a19
ER  - 
%0 Journal Article
%A G. Pirillo
%T A characterization of Fibonacci numbers
%J Čebyševskij sbornik
%D 2018
%P 259-271
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a19/
%G en
%F CHEB_2018_19_2_a19
G. Pirillo. A characterization of Fibonacci numbers. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 259-271. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a19/

[1] Albano A., “The Fibonacci sequence and the golden section in a lunette decoration of the medieval church of San Nicola in Pisa”, Territori della Cultura, 2016, 48–59

[2] Armienti P., “The medieval roots of modern scientific thought. A Fibonacci abacus on the facade of the church of San Nicola in Pisa”, Journal of Cultural Heritage, 17 (2016), 1–6 | DOI

[3] Arnoux P., Siegel A., “Dynamique du nombre d'or”, Actes de l'université d'été de Bordeaux, 2004 http://iml.univ-mrs.fr/ãrnoux/articles.html | Zbl

[4] A. U. Brother, An Introduction to Fibonacci Discovery, Fibonacci Association, San Jose State College, San Jose, Calif., 1965

[5] Cerretelli C., “L'architettura della chiesa”, Il Duomo di Prato, Casa Editrice Le Lettere (Cariprato), Firenze, 2009, 57–145

[6] Fantappiè R., Le carte della propositura di S. Stefano di Prato, v. I, 1006–1200, Leo S. Olschki Editore, Firenze, 1977, 332–335 | MR

[7] L. Fibonacci, Liber abbaci/Scritti di Leonardo Pisano matematico del secolo decimoterzo, pubblicato secondo la lezione del Codice Magliabechiano C. 1., 2616, Badia Fiorentina, n. 73 da Baldassarre Boncompagni, socio ordinario dell'Accademia pontificia de' nuovi Lincei, v. 1, Il Liber abbaci di Leonardo Pisano, Tipografia delle scienze matematiche e fisiche, Roma, 1857 | MR

[8] Dickson L. E., History of the Theory of Numbers, v. 1, Divisibility and primality, Carnegie Institution of Washington, Washington, 1919 | Zbl

[9] Knuth D. E., The Art of Computer Programming, v. 1, Fundamental Algorithms, Addison-Wesley, Reading, Mass., 1968 | MR | Zbl

[10] Knuth D. E., Morris J. H., Pratt V. R., Jr., “Fast pattern matching in strings”, SIAM J. Comput., 6:2 (1977), 323–350 | DOI | MR | Zbl

[11] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathematics: a foundation for computer science, Addison-Wesley, Reading, 1999 | MR

[12] Matiyasevich Yu. V., “Enumerable sets are Diophantine”, Soviet. Math. Doklady, 11:2 (1970), 354–358 | MR | Zbl

[13] Matiyasevich Yu. V., “Hilbert's Tenth Problem: Diophantine Equations in the Twentieth Century”, Mathematical Events of the Twentieth Century, translated by R. Cooke, eds. A. A. Bolibruch, Yu. S. Osipov, Ya. G. Sinai, Springer, Berlin, 2003, 185–213 | MR

[14] Meyer A., Steyaert C., Le nombre d'or et les nombres de Fibonacci, IREM, Université Paris VII, Paris, 1981

[15] Pirillo G., “Fibonacci numbers, words”, Discrete Math., 173:1-3 (1997), 197–207 | DOI | MR | Zbl

[16] Pirillo G., “A curious characteristic property of standard Sturmian words”, Algebraic combinatorics and computer science, Springer Italia, Milan, 2001, 541–546 | DOI | MR | Zbl

[17] Pirillo G., “Inequalities characterizing standard Sturmian and episturmian words”, Theoret. Comput. Sci., 341:1–3 (2005), 276–292 | DOI | MR | Zbl

[18] Pirillo G., “Numeri irrazionali e segmenti incommensurabili”, Nuova Secondaria, 7 (2005), 87–91

[19] Pirillo G., Some recent results of Fibonacci numbers, Fibonacci words and Sturmian words, IASI Research Report No 16-07; Southeast Asian Bull. of Math., 2016 (to appear) | Zbl

[20] Pirillo G., “La scuola pitagorica ed i numeri di Fibonacci”, Archimede, 2 (2017), 66–71

[21] Pirillo G., “Figure geometriche su un portale del Duomo di Prato”, Prato Storia e Arte, 121 (2017), 7–16

[22] Ramsey F. P., “On a problem of formal logic”, Proc. London Math. Soc., 30:4 (1929), 264–286 | MR | Zbl

[23] von Fritz K., “The discovery of incommensurability by Hippasus of Metapontum”, Ann. of Math., second series, 46 (1945), 242–264 | DOI | MR | Zbl

[24] Wasteels M. J., “Quelques Propriétés des Nombres de Fibonacci”, Mathesis, troisième sèr., 3 (1902), 60–62