The parallel semi-Markov processes in objects group control tasks
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 248-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functioning of complex objects, controlled with computer, is investigates. It id shown, that the abstract analogue of every control loop is the ordinary semi-Markov process. Such abstraction is insufficient for analytical modeling the object as a whole, this is why for the description of synchronizing processes it is necessary to have more complex model, which may be obtained by means integration of ordinary processes into complex semi-Markov processes. For determining of the abstraction the term “functional state”, as all possible combination of structural states is introduced. The method of calculation of complex process semi-Markov matrix elements is proposed. It is shown, how may be evaluated time intervals of wandering through complex semi-Markov process.
Keywords: group control, ergodic semi-Markov process, ctate combination, Cartesian product of semi-Markov matrices, wandering.
@article{CHEB_2018_19_2_a18,
     author = {A. N. Privalov and E. V. Larkin},
     title = {The parallel {semi-Markov} processes in objects group control tasks},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {248--258},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a18/}
}
TY  - JOUR
AU  - A. N. Privalov
AU  - E. V. Larkin
TI  - The parallel semi-Markov processes in objects group control tasks
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 248
EP  - 258
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a18/
LA  - ru
ID  - CHEB_2018_19_2_a18
ER  - 
%0 Journal Article
%A A. N. Privalov
%A E. V. Larkin
%T The parallel semi-Markov processes in objects group control tasks
%J Čebyševskij sbornik
%D 2018
%P 248-258
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a18/
%G ru
%F CHEB_2018_19_2_a18
A. N. Privalov; E. V. Larkin. The parallel semi-Markov processes in objects group control tasks. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 248-258. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a18/

[1] S. G. Tzafestas, Introduction to Mobile Robot Control, Elsevier, 2014, 692 pp.

[2] S. Kahar, R. Sulaiman, A. S. Prabuwono, N. Akma, S. A. Ahmad, M. A. Abu Hassan, “A Review of Wireless Technology Usage for Mobile Robot Controller”, 2012 International Proceedings of Computer Science and Infor-mation Technology IPCSIT. International Conference on System Engineering and Modeling ICSEM 2012, 7–12

[3] G. Cook, Mobile robots: Navigation, Control and Remote Sensing, Wiley-IEEE Press, 2011, 319 pp.

[4] B. Siciliano, Springer Handbook of Robotics, Springer-Verlag, Berlin–Heidelberg, 2008, 1611 pp. | Zbl

[5] E. V. Larkin, A. N. Ivutin, “Estimation of Latency in Embedded Real-Time Systems”, 3-rd Meditteranean Conference on Embedded Computing (MECO-2014) (Budva, Montenegro, 2014), 236–239

[6] E. V. Larkin, A. N. Ivutin, V. V. Kotov, A. N. Privalov, “Semi-Markov Modeling of Command Execution by Mobile robots”, Interactive Collaborative Robotics, ICR 2016 (Budapest, Hungary), Lecture Notes in Artifical Intelligence. Subseries of Lecture notes in Computer Science, Springer, 2016, 189–198

[7] G. C. Buttazo, Hard Real-Time Computing Systems. Predictable Scheduling Algorithms and Applications, Springer Science+Buseness Media. LLC, 2011, 521 pp.

[8] N. Limnios, A. Swishchuk, “Discrete-Time Semi-Markov Random Evolutions and their Applications”, Adv. in Appl. Probab., 45:1 (2013), 214–240 | DOI | MR | Zbl

[9] T. R. Bielecki, J. Jakubowski, M. Niewegłowski, “Conditional Markov chains: Properties, construction and structured dependence”, Stochastic Processes and their Applications, 127:4 (2017), 1125–1170 | DOI | MR | Zbl

[10] J. Janssen, R. Manca, Applied Semi-Markov processes, Springer US, 2005, 310 pp. | MR

[11] E. V. Larkin, Yu. I. Lutskov, A. N. Ivutin, A. S. Novikov, “Simulation of concurrent process with Petri-Markov nets”, Life Science Journal, 11:11 (2014), 506–511

[12] A. N. Ivutin, E. V. Larkin, “Simulation of Concurrent Games”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 8:2 (2015), 43–54 | Zbl

[13] E. V. Larkin, A. N. Ivutin, V. V. Kotov, A. N. Privalov, “Simulation of Relay-races”, Bulletin of the South Ural State University. Mathematical Modelling, Programming Computer Software, 9:4 (2016), 117–128 | Zbl

[14] J. Gallied, Discrete Mathematics. Elementary and Beyond, Under-graduate Texts in Mathematics, Springer, N.Y., 2003, 453 pp. | MR

[15] H. Bauer, Probability Theory, Walter de Gruyter, Berlin–N.Y., 1996, 523 pp. | MR

[16] A. N. Shiryaev, Probability, Springer Science+Business Midia, 1996, 611 pp. | MR