The zeta function of monoids with a given abscissa of absolute convergence
Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 142-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues consideration of a new class of the Dirichlet — Zeta function of monoids of natural numbers. The main task solved in this paper is to construct a monoid of natural numbers for which the Zeta function of this monoid has a given abscissa of absolute convergence. Previously, the author solved a similar problem of constructing a set of natural numbers for which the corresponding Zeta function has a given abscissa of absolute convergence. To solve the problem for the Zeta function of the monoid of natural numbers there are certain difficulties associated with the need to build a sequence of primes that meet certain requirements for the growth of terms. The notion $\sigma$-sequences $\mathbb{P}_\sigma$ of primes was introduced, whose terms satisfy the inequality $n^\sigma\le p_n(n+1)^\sigma.$ With the help of a theorem of Ingham with a cubic growth of Prime numbers was able to build a $\sigma$-a sequence of primes for any $\sigma\ge3$. For the corresponding Zeta function of a monoid generated by a given $\sigma$-sequence of primes, the abscissa of absolute convergence is $\frac{1}{\sigma}$. Thus, with the help of Ingam's theorem it was possible to solve the problem for the abscissa values of absolute convergence from $0$ to $\frac{1}{3}$. For such monoids it is possible to obtain an asymptotic formula for the Prime number distribution function $\pi_{\mathbb{P}_\sigma}(x)$: $\pi_{\mathbb{P}_\sigma}(x)=x^{\frac{1}{\sigma}}+\theta(x)$, where $-2\theta(x)-1$. To prove the existence of a monoid of natural numbers, for whose Zeta function the abscissa value of absolute convergence is from $\frac{1}{3}$ to $1$, it was necessary to use Rosser's Prime number theorem. For this purpose, the concept $\sigma$-sequences of the second kind was introduced. In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, logarithm of the Euler product.
@article{CHEB_2018_19_2_a10,
     author = {N. N. Dobrovolsky},
     title = {The zeta function of monoids with a given abscissa of absolute convergence},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {142--150},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/}
}
TY  - JOUR
AU  - N. N. Dobrovolsky
TI  - The zeta function of monoids with a given abscissa of absolute convergence
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 142
EP  - 150
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/
LA  - ru
ID  - CHEB_2018_19_2_a10
ER  - 
%0 Journal Article
%A N. N. Dobrovolsky
%T The zeta function of monoids with a given abscissa of absolute convergence
%J Čebyševskij sbornik
%D 2018
%P 142-150
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/
%G ru
%F CHEB_2018_19_2_a10
N. N. Dobrovolsky. The zeta function of monoids with a given abscissa of absolute convergence. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 142-150. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/

[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR

[2] S. M. Voronin, Izbrannye trudy: Matematika, eds. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.

[3] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR

[4] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | DOI | MR | Zbl

[5] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M. Dobrovol'skii N. N., Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients, Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia, 2012, 283 pp.

[6] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107 | Zbl

[7] M. N. Dobrovol'skij, “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[8] N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR | Zbl

[9] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR

[10] N. N. Dobrovolsky, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1, 79–105 | DOI | MR

[11] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl

[12] Trost E., Prime numbers, Izd-vo Fiz-matlit, M., 1959, 511 pp.

[13] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[14] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl

[15] B. Rosser, “The $n$-th Prime is greater than $n\log n$”, Proc. London Math. Soc., 45 (1938), 21–44 | MR