Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_2_a10, author = {N. N. Dobrovolsky}, title = {The zeta function of monoids with a given abscissa of absolute convergence}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {142--150}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/} }
N. N. Dobrovolsky. The zeta function of monoids with a given abscissa of absolute convergence. Čebyševskij sbornik, Tome 19 (2018) no. 2, pp. 142-150. http://geodesic.mathdoc.fr/item/CHEB_2018_19_2_a10/
[1] E. Bombieria, A. Ghoshb, “Around the Davenport-Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI | MR
[2] S. M. Voronin, Izbrannye trudy: Matematika, eds. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.
[3] S. M. Voronin, A. A. Karacuba, Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp. | MR
[4] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovol'skii, N. M. Dobrovol'skii, L. P. Dobrovol'skaya, A. V. Rodionov, O. A. Pikhtil'kova, “Number-theoretic method in approximate analysis”, Chebyshevskii Sbornik, 18:4 (2017), 6–85 | DOI | MR | Zbl
[5] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M. Dobrovol'skii N. N., Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients, Izdatel'stvo Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia, 2012, 283 pp.
[6] Dobrovol'skaya L. P., Dobrovol'skii M. N., Dobrovol'skii N. M., Dobrovol'skii N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107 | Zbl
[7] M. N. Dobrovol'skij, “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl
[8] N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol'skaya, O. E. Bocharova, “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI | MR | Zbl
[9] N. N. Dobrovolsky, “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 187–207 | DOI | MR
[10] N. N. Dobrovolsky, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii Sbornik, 19:1, 79–105 | DOI | MR
[11] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl
[12] Trost E., Prime numbers, Izd-vo Fiz-matlit, M., 1959, 511 pp.
[13] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR
[14] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl
[15] B. Rosser, “The $n$-th Prime is greater than $n\log n$”, Proc. London Math. Soc., 45 (1938), 21–44 | MR