Joint discrete universality for Lerch zeta-functions
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 138-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

After Voronin's work of 1975, it is known that some of zeta and $L$-functions are universal in the sense that their shifts approximate a wide class of analytic functions. Two cases of shifts, continuous and discrete, are considered. The present paper is devoted to the universality of Lerch zeta-functions $L(\lambda, \alpha, s)$, $s= \sigma+it $, which are defined, for $ \sigma > 1$, by the Dirichlet series with terms $ e^{2 \pi i \lambda m}(m+ \alpha)^{-s} $ with parameters $\lambda \in \mathbb{R} $ and $\alpha$, $0 \alpha \leqslant 1$, and by analytic continuation elsewhere. We obtain joint discrete universality theorems for Lerch zeta-functions. More precisely, a collection of analytic functions $ f_{1}(s), \dots, f_{r}(s) $ simultaneously is approximated by shifts $L(\lambda_{1},\alpha_{1},s+ikh),\dots, L(\lambda_{r},\alpha_{r},s+ikh)$, $k=0,1,2,\dots$, where $h>0$ is a fixed number. For this, the linear independence over the field of rational numbers for the set $\left \{ (\log (m+ \alpha_{j}): m \in \mathbb{N}_{0},\; j=1,\dots,r),\frac{2 \pi}{h} \right\}$ is required. For the proof, probabilistic limit theorems on the weak convergence of probability measures in the space of analytic function are applied.
Keywords: Lerch zeta-function, Mergelyan theorem, space of analytic functions, universality, weak convergence.
@article{CHEB_2018_19_1_a9,
     author = {A. Laurin\v{c}ikas and A. Mincevi\v{c}},
     title = {Joint discrete universality for {Lerch} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {138--151},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - A. Mincevič
TI  - Joint discrete universality for Lerch zeta-functions
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 138
EP  - 151
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/
LA  - ru
ID  - CHEB_2018_19_1_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A A. Mincevič
%T Joint discrete universality for Lerch zeta-functions
%J Čebyševskij sbornik
%D 2018
%P 138-151
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/
%G ru
%F CHEB_2018_19_1_a9
A. Laurinčikas; A. Mincevič. Joint discrete universality for Lerch zeta-functions. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 138-151. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/

[1] Billingsley P., Convergence of Probability Measures, Wiley, N. Y., 1968, 262 pp. | MR | Zbl

[2] Conway J. B., Functions of one complex variable, Springer, Berlin–Heidelberg–N. Y., 1978, 167 pp. | MR

[3] Ignatavičiūtė J., “Discrete universality of the Lerch zeta-function”, Abstracts 8th Vilnius Conference on Prob. Theory (Vilnius, Lithuania, 2002), 116–117

[4] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 | MR

[5] Laurinčikas A., “The universality of the Lerch zeta-function”, Liet. Matem. Rink, 37 (1997), 275–280 ; 367–375 | Zbl

[6] Laurinčikas A., “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3(11) (2008), 169–187 | MR | Zbl

[7] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 189 pp. | MR | Zbl

[8] Laurinčikas A., Macaitienė R., “The discrete universality of the periodic Hurwitz zeta-function”, Integral Transforms. Spec. Funct., 20 (2009), 673–686 | DOI | MR | Zbl

[9] Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D., Universality of the periodic Hurwitz zeta-function with rational parameter, 2017 (to appear)

[10] Laurinčikas A., Matsumoto K., “The joint universality and functional independence for Lerch zeta-functions”, Nagoya Math. Journal, 157 (2000), 211–227 | DOI | MR | Zbl

[11] Laurinčikas A., Matsumoto K., “Joint value-distribution theorems on Lerch zeta-functions. II”, Lith. Math. Journal, 46 (2006), 332–350 | MR | Zbl

[12] Laurinčikas A., Mincevič A., “Discrete universality theorems for the Lerch zeta-function”, Anal. Probab. Methods Number Theory, eds. A. Dubickas et al., 87–95

[13] Lerch M., “Note sur la fonction $K(w,x,s)= \sum_{n \geqslant 0} \exp\{ 2 \pi inx \}(n+w)^{-s}$”, Acta Math., 11 (1887), 19–24 | DOI | MR

[14] Lipschitz R., “Untersuchung einer aus vier Elementen gebildeten Reihe”, J. Reine Angew. Math., 105 (1889), 127–156 | MR

[15] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Amer. Math. Trans., 101 (1952) | MR | Zbl

[16] Mincevič A., Šiaučiūnas D., “Joint universality theorems for Lerch zeta-functions”, Šiauliai Math. Semin., 12(20) (2017), 31–47

[17] Mincevič A., Vaiginytė A., “Remarks on the Lerch zeta-function”, Šiauliai Math. Semin., 11(19), 65–73 | Zbl

[18] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI | MR | Zbl