Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a9, author = {A. Laurin\v{c}ikas and A. Mincevi\v{c}}, title = {Joint discrete universality for {Lerch} zeta-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {138--151}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/} }
A. Laurinčikas; A. Mincevič. Joint discrete universality for Lerch zeta-functions. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 138-151. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a9/
[1] Billingsley P., Convergence of Probability Measures, Wiley, N. Y., 1968, 262 pp. | MR | Zbl
[2] Conway J. B., Functions of one complex variable, Springer, Berlin–Heidelberg–N. Y., 1978, 167 pp. | MR
[3] Ignatavičiūtė J., “Discrete universality of the Lerch zeta-function”, Abstracts 8th Vilnius Conference on Prob. Theory (Vilnius, Lithuania, 2002), 116–117
[4] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 | MR
[5] Laurinčikas A., “The universality of the Lerch zeta-function”, Liet. Matem. Rink, 37 (1997), 275–280 ; 367–375 | Zbl
[6] Laurinčikas A., “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3(11) (2008), 169–187 | MR | Zbl
[7] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 189 pp. | MR | Zbl
[8] Laurinčikas A., Macaitienė R., “The discrete universality of the periodic Hurwitz zeta-function”, Integral Transforms. Spec. Funct., 20 (2009), 673–686 | DOI | MR | Zbl
[9] Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D., Universality of the periodic Hurwitz zeta-function with rational parameter, 2017 (to appear)
[10] Laurinčikas A., Matsumoto K., “The joint universality and functional independence for Lerch zeta-functions”, Nagoya Math. Journal, 157 (2000), 211–227 | DOI | MR | Zbl
[11] Laurinčikas A., Matsumoto K., “Joint value-distribution theorems on Lerch zeta-functions. II”, Lith. Math. Journal, 46 (2006), 332–350 | MR | Zbl
[12] Laurinčikas A., Mincevič A., “Discrete universality theorems for the Lerch zeta-function”, Anal. Probab. Methods Number Theory, eds. A. Dubickas et al., 87–95
[13] Lerch M., “Note sur la fonction $K(w,x,s)= \sum_{n \geqslant 0} \exp\{ 2 \pi inx \}(n+w)^{-s}$”, Acta Math., 11 (1887), 19–24 | DOI | MR
[14] Lipschitz R., “Untersuchung einer aus vier Elementen gebildeten Reihe”, J. Reine Angew. Math., 105 (1889), 127–156 | MR
[15] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Amer. Math. Trans., 101 (1952) | MR | Zbl
[16] Mincevič A., Šiaučiūnas D., “Joint universality theorems for Lerch zeta-functions”, Šiauliai Math. Semin., 12(20) (2017), 31–47
[17] Mincevič A., Vaiginytė A., “Remarks on the Lerch zeta-function”, Šiauliai Math. Semin., 11(19), 65–73 | Zbl
[18] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI | MR | Zbl