Boundary behavior and the problem of analytic continuation of a certain class of Dirichlet series with multiplicative coefficients as an integral functions on the complex plane
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 124-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the class of Dirichlet series with multiplicative coefficients defining Functions regular in the right half-plane of the complex plane and admitting Approximation by Dirichlet polynomials in the critical strip. It is shown that the regularity condition on the imaginary axis allows one to analytically continue such series as entire functions on the complex plane. The proof of this fact is based on the properties of approximation Dirichlet polynomials and the Riemann-Schwartz ideas, embedded in the symmetry principle of analytic continuation functions of a complex variable. The class of Dirichlet series for which Analyticity analysis on the imaginary axis. It should be noted that the result obtained in the work has a direct relation to the solution of the well-known problem of generalized characters posed by Y. V. Linnik and N. G. Chudakov in the 1950s. The approach indicated in the paper in the problem of analytic continuation of Dirichlet series with numerical properties admits a generalization to Dirichlet series with characters of numeric fields. This encourages credit continuation without using the functional equation of the Dirichlet $L$-functions of numeric fields on the complex plane. We also note that the class of Dirichlet series studied in this paper belongs to the Dirichlet series whose coefficients are determined by non-principal generalized characters. It can be shown that for these series the condition of analytic continuation. As far back as 1984, V. N. Kuznetsov showed that in the case of an analytic continuation of such series in an integral way onto the complex plane determined by the order of growth of the module, then Chudakov's hypothesis that the generalized character is a Dirichlet character will take place. But the final solution of the problem of generalized characters, put in 1950 by Y. V. Linnik and N. G. Chudakov, will be given in the following papers of the authors.
Keywords: approximation Dirichlet polynomials, the Riemann-Schwarz symmetry principle, conformal mappings.
@article{CHEB_2018_19_1_a8,
     author = {V. N. Kuznetsov and O. A. Matveeva},
     title = {Boundary behavior and the problem of analytic continuation of a certain class of {Dirichlet} series with multiplicative coefficients as an integral functions on the complex plane},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--137},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a8/}
}
TY  - JOUR
AU  - V. N. Kuznetsov
AU  - O. A. Matveeva
TI  - Boundary behavior and the problem of analytic continuation of a certain class of Dirichlet series with multiplicative coefficients as an integral functions on the complex plane
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 124
EP  - 137
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a8/
LA  - ru
ID  - CHEB_2018_19_1_a8
ER  - 
%0 Journal Article
%A V. N. Kuznetsov
%A O. A. Matveeva
%T Boundary behavior and the problem of analytic continuation of a certain class of Dirichlet series with multiplicative coefficients as an integral functions on the complex plane
%J Čebyševskij sbornik
%D 2018
%P 124-137
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a8/
%G ru
%F CHEB_2018_19_1_a8
V. N. Kuznetsov; O. A. Matveeva. Boundary behavior and the problem of analytic continuation of a certain class of Dirichlet series with multiplicative coefficients as an integral functions on the complex plane. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 124-137. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a8/

[1] Kuznetsov V. N., “Analog teoremy Sjoge dlja odnogo klassa rjadov Dirihle”, Mat. zametki, 38:6 (1984), 805–812

[2] Kuznetsov V. N., “On the analytic extension of a class of Dirichlet series”, Vychislitel'nye metody i programmirovanie, Mezhvuz. sb. nauch. tr., v. 1, 1987, 13–23

[3] Matveeva O. A., “Approksimacionnye polinomy i povedenie L-funkcij Dirihle v kriticheskoj polose”, Izvestija Sarat. un-ta. Matematika, Mehanika. Informatika, 2:4 (2013), 80–84

[4] Matveeva O. A., “On the zeros of Dirichlet polynomials that approximate Dirichlet L-functions in the critical band”, Chebyshevskij sbornik, 14:2 (2013), 117–121

[5] Matveeva O. A., Analiticheskie svojstva opredelennyh klassov rjadov Dirihle i nekotorye zadachi teorii L-funkcij Dirihle, Thesis for the academic degree of the Ph.D., Ulyanovsk, 2014, 110 pp.

[6] Kuznetsov V. N., Matveeva O. A., “Nekotorye zadachi, svyazannye s raspredeleniem nulej celyh funkcij, opredelennyh ryadami Dirihle s konechnoznachnymi koehfficientami”, Chebyshevskij sbornik, 12:2 (2011), 54–60 | Zbl

[7] Kuznetsov V. N., Matveeva O. A., “K zadache analiticheskogo prodolzheniya ryadov Dirihle s konechnoznachnymi koehfficientami kak celyh funkcij na kompleksnuyu ploskost'”, Chebyshevskij sbornik, 18:4 (2017), 285–295

[8] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:4 (2016), 115–124 | DOI | Zbl

[9] Kuznetsov V. N., Matveeva O. A., “O granichnom povedenii odnogo klassa rjadov Dirihle”, Chebyshevskij sbornik, 17:2 (2016), 162–169 | DOI

[10] Kuznetsov V. N., Matveeva O. A., “Approksimacionnyj podhod v nekotoryh zadachah teorii rjadov Dirihle s mul'tiplikativnymi kojefficientami”, Chebyshevskij sbornik, 17:4 (2016), 124–131 | DOI | Zbl

[11] Kuznetsov V. N., Matveeva O. A., “Approximation Dirichlet polynomials and some properties of Dirichlet L-functions”, Chebyshevskij sbornik, 18:4 (2017), 296–304

[12] Markushevich A. I., v. Theory of analitical functions, Nauka, M., 1967, 624 pp.

[13] Gurvic A., Nurant R., Teoriya funkcij, Nauka, M., 1968, 648 pp.

[14] Daugavet I. K., Vvedenie v teoriyu priblizheniya funkcij, Izd-vo LGU, L., 1977, 184 pp.

[15] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, IL, M., 1953, 407 pp.