Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a5, author = {D. V. Gorbachev and V. I. Ivanov and E. P. Ofitserov and O. I. Smirnov}, title = {The second {Logan} extremal problem for the fourier transform over the eigenfunctions of the {Sturm--Liouville} operator}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {57--78}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a5/} }
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov AU - E. P. Ofitserov AU - O. I. Smirnov TI - The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm--Liouville operator JO - Čebyševskij sbornik PY - 2018 SP - 57 EP - 78 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a5/ LA - ru ID - CHEB_2018_19_1_a5 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %A E. P. Ofitserov %A O. I. Smirnov %T The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm--Liouville operator %J Čebyševskij sbornik %D 2018 %P 57-78 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a5/ %G ru %F CHEB_2018_19_1_a5
D. V. Gorbachev; V. I. Ivanov; E. P. Ofitserov; O. I. Smirnov. The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm--Liouville operator. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 57-78. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a5/
[1] Logan B. F., “Extremal problems for positive-definite bandlimited functions. I. Eventually positive functions with zero integral”, SIAM J. Math. Anal., 14:2 (1983), 249–252 | DOI | MR | Zbl
[2] Logan B. F., “Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions”, SIAM J. Math. Anal., 14:2 (1983), 253–257 | DOI | MR | Zbl
[3] Gorbachev D. V., “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl
[4] Chernykh N. I., “On Jackson's inequality in $L_2$”, Proc. Steklov Inst. Math., 88 (1967), 75–78 | MR | Zbl | Zbl
[5] Yudin V. A., “The multidimensional Jackson theorem”, Math. Notes, 20:3 (1976), 801–804 | DOI | MR | Zbl
[6] Berdysheva E. E., “Two related extremal problems for entire functions of several variables”, Math. Notes, 66:3 (1999), 271–282 | DOI | DOI | MR | Zbl
[7] Ivanov A. V., “Some extremal problem for entire functions in weighted spaces”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2010, no. 1, 26–44 (in Russian)
[8] Gorbachev D. V., Ivanov V. I. “Some extremal problems for Fourier transform on hyperboloid”, Math. Notes, 102:4 (2017), 480–491 | MR | Zbl
[9] Gorbachev D. V., Ivanov V. I., Ofitserov E. P., Smirnov O. I., “Some extremal problems of harmonic analysis and approximation theory”, Chebyshevskii Sbornik, 18:4 (2017), 139–166 (in Russian) | DOI
[10] Frappier C., Olivier P., “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60 (1993), 303–316 | DOI | MR | Zbl
[11] Grozev G. R., Rahman Q. I., “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64 (1995), 715–725 | DOI | MR | Zbl
[12] Gorbachev D. V., Ivanov V. I., “Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm–Liouville problem, which are exact for entire functions of exponential type”, Sbornik: Math., 206:8 (2015), 1087–1122 | DOI | DOI | MR | Zbl
[13] Gorbachev D. V., Ivanov V. I., “Some extremal problems for the Fourier transform over eigenfunctions of the Sturm–Liouville operator”, Chebyshevskii Sbornik, 18:4 (2017), 139–166 (in Russian) | DOI | Zbl
[14] Arestov V. V., Chernykh N. I., “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and functions spaces, Proc. intern. conf. (Gdansk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR
[15] Ivanov A. V., Ivanov V. I., “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb{R}^d)$”, Math. Notes, 94:3 (2013), 320–329 | DOI | DOI | MR | Zbl
[16] Gorbachev D. V., Ivanov V. I., Veprintsev R. A., “Optimal Argument in Sharp Jackson's inequality in the Space $L_2$ with the Hyperbolic Weight”, Math. Notes, 96:6 (2014), 338–348 | MR
[17] Veprintsev R. A., “Approximation in $L_2$ by partial integrals of the multidimensional Jacobi transform”, Math. Notes, 97:6 (2015), 815–831 | DOI | Zbl
[18] Gorbachev D. V., Ivanov V. I., “Approximation in $L_2$ by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Math. Notes, 100:4 (2016), 540–549 | DOI | DOI | MR | Zbl
[19] Gorbachev D. V., Ivanov V. I., Veprintsev R. A., “Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator”, Trudy Inst. Mat. Mekh. UrO RAN, 22, no. 4, 2016, 136–152 (in Russian)
[20] Gorbachev D. V., Strankovskii S. A., “An extremal problem for even positive definite entire functions of exponential type”, Math. Notes, 80:5 (2006), 673–678 | DOI | DOI | MR | Zbl
[21] Ivanov V. I., Ivanov A. V., “Optimal arguments in the Jackson-Stechkin inequality in $L_2(\mathbb{R}^d)$ with Dunkl weight”, Math. Notes, 96:5 (2014), 666–677 | DOI | DOI | MR | Zbl
[22] Ivanov V., Ivanov A., “Generalized Logan's Problem for Entire Functions of Exponential Type and Optimal Argument in Jackson's Inequality in $L_2(\mathbb{R}^3)$”, Acta. Math. Sin., English Ser. (First Online: 28 April 2018) | MR
[23] Gorbachev D. V., Selected Problems in the Theory of Functions and Approximation Theory: Their Applications, Grif and K, Tula, 2005, 192 pp. (in Russian)
[24] Yudin V. A., “Disposition of Points on a Torus and Extremal Properties of Polynomials”, Proc. Steklov Inst. Math., 219 (1997), 447–457 | MR | Zbl
[25] Levitan B. M., Sargsyan I. S., Introduction to spectral theory, Nauka, M., 1970, 671 pp. (in Russian)
[26] Levitan B. M., Sargsyan I. S., Sturm–Liouville and Dirac Operators, Nauka, M. (in Russian)
[27] Flensted-Jensen M., Koornwinder T. H., “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR | Zbl
[28] Flensted-Jensen M., Koornwinder T. H., “Jacobi functions: The addition formula and the positivity of dual convolution structure”, Ark. Mat., 17 (1979), 139–151 | DOI | MR | Zbl
[29] Levitan B. M., Theory of generalized translation operators, Nauka, M., 1973, 312 pp. (in Russian)
[30] Levin B. Ya., Distribution of Roots of Entire Functions, Gostekhizdat, M., 1956, 632 pp. (in Russian)
[31] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl
[32] Rösler M., “Dunkl Operators: Theory and Applications”, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | DOI | MR | Zbl
[33] de Jeu M., “Paley–Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 358:10 (2006), 4225–4250 | DOI | MR | Zbl
[34] Xu Y., “Dunkl operators: Funk-Hecke formula for orthogonal polynomials on spheres and on balls”, Bull. London Math. Soc., 32 (2000), 447–457 | DOI | MR | Zbl
[35] Vilenkin N. J., Special Functions and the Theory of Group Representations, Translations of mathematical monographs, 22, Amer. Math. Soc., Providence, RI, 1968, 613 pp. | DOI | MR | Zbl
[36] Koornwinder T. H., “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Mat., 13 (1979), 145–159 | DOI | MR