Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 220-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the diffraction problem for a plane sound wave on an elastic ellipsoid $E$ with an outer inhomogeneous layer is presented. The ellipsoid is in a half-space filled with an ideal fluid. The boundary of a half-space $\Pi$ is an acoustically rigid or acoustically soft surface. To obtain a solution, the area occupied by the liquid is expanded to full space. An additional scattering obstacle is introduced. This obstacle is a copy of $E$, located mirror-wise with respect to the plane $\Pi$. A second incident plane wave is also added. This wave ensures the fulfillment of that condition at the points of the plane $\Pi$, which corresponds to the type of the half-space boundary in the initial formulation of the problem. Thus, the problem is transformed into the problem of scattering of two plane sound waves on two ellipsoids in unbounded space. The solution is based on the linear theory of elasticity and the model of propagation of small vibrations in an ideal fluid. In the outer part of the environment, the solution is sought analytically in the form of an expansion in spherical harmonics and Bessel functions. In the spherical region, which includes two ellipsoids and an adjacent layer of liquid, the finite element method (FEM) is used. The results of the calculation of the directivity patterns of the scattered sound field in the far zone are presented. These dependences show the influence of the geometric and material parameters of the ellipsoid on the diffraction of sound.
Keywords: scattering of sound waves, half-space, inhomogeneous elastic ellipsoid, finite element method.
@article{CHEB_2018_19_1_a15,
     author = {S. A. Skobel'tsyn},
     title = {Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {220--237},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a15/}
}
TY  - JOUR
AU  - S. A. Skobel'tsyn
TI  - Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 220
EP  - 237
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a15/
LA  - ru
ID  - CHEB_2018_19_1_a15
ER  - 
%0 Journal Article
%A S. A. Skobel'tsyn
%T Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface
%J Čebyševskij sbornik
%D 2018
%P 220-237
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a15/
%G ru
%F CHEB_2018_19_1_a15
S. A. Skobel'tsyn. Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 220-237. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a15/

[1] Fedoruk M. V., “Diffraction of sound waves by a triaxial ellipsoid”, Acoustical Physics, 34:1 (1988), 160–164

[2] Bateman H., Erdelyi A., Higher transcendental functions, v. 3, McGraw-Hill, New York, 1955, 292 pp. | Zbl

[3] Silbiger A., “Scattering of sound by an elastic prolate spheroid”, J. Acoust. Soc. Amer., 35:4 (1963), 564–570 | DOI | MR

[4] Flax L. Dragonette L., Varadan V. K., Varadan V. V., “Analisis and computation of the acoustic scattering by an elastic prolate spheroid obtained from the T-matrix formulation”, J. Acoust. Soc. Amer., 71:5 (1982), 1077–1082 | DOI | Zbl

[5] Kleshchev A. A., “Three-dimensional and two-dimensional (axisymmetric) characteristics of elastic spheroid scatterers”, Akust. Zhurnal, 32:2 (1986), 268–271

[6] Hackman R. H. Sammelmann G. S., Williams K. L., Trivett D. H., “A reamalysis of the acoustic scattering from elastic spheroids”, J. Acoust. Soc. Amer., 83:4 (1988), 1255–1266 | DOI

[7] Rozhdestvenskij K. N., Tolokonnikov L. A., “On the scattering of sound waves by an elastic spheroid”, Akust. Zhurnal, 36:5 (1990), 927–930

[8] Tolokonnikov L. A., “Diffraction of sound waves by an elastic spheroid with a small eccentricity in a viscous medium”, Izv. Tul. Gos. Univ., Ser. Maths. Mech. Computer science, 3:1 (1997), 152–157

[9] Tolokonnikov L. A., Lobanov A. V., “Diffraction of a plane sound wave on an inhomogeneous elastic spheroid”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2011, no. 2, 176–191

[10] Cooper G., Temple J. A. G., “Calculations of acoustic scattering from ellipsoidal voids: bends, krill and fish”, Ultrasonics, 21:4 (1983), 171–176 | DOI

[11] Waterman P. C., “Matrix formulation of electromagnetic scattering”, Proc. IEEE, 53 (1965), 805–812 | DOI | Zbl

[12] Waterman P. C., “T-matrix methods in acoustic scattering”, Acoust. Soc. Amer., 125:1 (2009), 42–51 | DOI

[13] Tsao S. J., Varadan V. V., Varadan V. K., “T-Matrix Approach to Scattering of Elastic (SH-) Waves by an Inclined Surface Void”, ASME. J. Appl. Mech., 50:1 (1983), 143–148 | DOI | Zbl

[14] Lavia E., Gonzalez J. D., Blanc S., A Computational Method to Calculate the Exact Solution for Acoustic Scattering by Liquid Spheroids, 2016, 14 pp., arXiv: 1603.00499v2 [physics.comp-ph] | Zbl

[15] Athanasiadis C., “The hard-core multi-layered ellipsoid in a low-frequency acoustic field”, Int. J. Eng., 32 (1994), 1352–1359

[16] Athanasiadis C., “The multi-layered ellipsoid with a soft core in the presence of a low-frequency acoustic wave”, Q. J. Mech. Appl. Math., 47 (1994), 441–159 | DOI

[17] Charalambopoulos A., Dassios G., “Scattering of a spherical wave by a small ellipsoid”, IMA J. Appl. Math., 62 (1999), 117–136 | DOI | MR | Zbl

[18] Ershov N. E., Illarionova L. V., Smagin S. I., “Numerical solution of three-dimensional stationary problem of acoustic waves diffraction”, Vychislitel`nye tekhnologii, 15:1 (2010), 60–76 | Zbl

[19] Veksler N. D., Dubus B., Lavie A., “Acoustic wave scattering by an ellipsoidal shell”, Acoust. Phys., 45 (1999), 46–51

[20] Harari I., Hughes T. J. R., “Finite element method for the Helmholtz equation in an exterior domain: model problems”, Comp. Methods Appl. Mech. Eng., 87 (1991), 59–96 | DOI | MR | Zbl

[21] Gan H., Levin P. L., Ludwig R., “Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain”, J. Acoust. Soc. Am., 94:3-1 (1993), 1651–1662 | DOI | MR

[22] Ihlenburg F., Finite element analysis of acoustic scattering, Springer Publishing Company Inc., New York, 2013, 226 pp. | MR

[23] Skobel'tsyn S. A., “Approach to solving problems on the scattering of elastic waves using FEM”, Tez. doc. Intern. scientific. Conf. “Modern problems of mathematics, mechanics, computer science”, Tul. Gos. Univ., Tula, 2004, 135–136

[24] Ivanov V. I., Skobel'tsyn S. A., “Modeling solutions to acoustics using FEM”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2008, no. 2, 132–145

[25] Ivanov E. A., Diffraction of electromagnetic waves by two bodies, Nauka i tekhnika, Minsk, 1968, 584 pp.

[26] Kleshchev A. A., “Scattering of sound by spheroidal bodies located at the interface between media”, Akust. Zhurnal, 23:3 (1977), 404–410

[27] Gaunaurd J. C., Huang H., “Acoustic scattering by a spherical body near a plane boundary”, J. Acoust. Soc. Amer., 96:6 (1994), 2526–2536 | DOI | MR

[28] Tolokonnikov L. A., Logvinova A. L., “Diffraction of a plane sound wave on two non-uniform cylinders with rigid inserts”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2015, no. 1, 54–66

[29] Skobel'tsyn S. A., Tolokonnikov L. A., “Diffraction of a plane sound wave on an elastic spheroid with an inhomogeneous coating in the presence of an underlying surface”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2015, no. 2, 64–75

[30] Isakovich M. A., General acoustics, Nauka, M., 1973, 496 pp.

[31] Nowacki W., Teoria sprezystosci, Mir, M., 1975, 872 pp.

[32] Skudryzk E. F., The Foundations Acoustic, Springer-Verlag, New York, 1971, 542 pp. | MR