Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a14, author = {E. M. Rarova}, title = {Weighted number of points of algebraic net}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {200--219}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/} }
E. M. Rarova. Weighted number of points of algebraic net. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 200-219. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/
[1] Babenko K.I., Fundamentals of numerical analysis, Nauka, M., 1986
[2] Bakhvalov N.S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18
[3] Bocharova (Dobrovol'skaya) L.P., “Algorithms for finding the optimal coefficients”, Chebyshevskij sbornik, 8:1(21) (2007), 4–109
[4] A. S. Gertsog, E. D. Rebrov, E. V. Trikolich, “On K. K. Frolov's method in the theory of quadrature formulas”, Chebyshevskij sbornik, 10:2(30) (2009), 10–54
[5] A. S. Gertsog, “Chislennoe vychislenie chetyrekhkratnykh integralov po metodu Frolova s ispolzovaniem algebraicheskikh setok bikvadratichnogo polya Dirikhle $\mathbb{Q}(\sqrt2+\sqrt3)$”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2011, no. 3, 22–30
[6] A. S. Gertsog, “Parametrizatsiya chetyrekhmernoi setki bikvadratichnogo polya Dirikhle”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 23(188):5 (2011), 41–53
[7] A. S. Gertsog, “POIVS TMK: Bikvadratichnye polya i kvadraturnye formuly”, Mnogomasshtabnoe modelirovanie struktur i nanotekhnologii, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi 190-letiyu so dnya rozhdeniya akademika Pafnutiya Lvovicha Chebysheva, stoletiyu so dnya rozhdeniya akademika Sergeya Vasilevicha Vonsovskogo i 80-letiyu so dnya rozhdeniya chlen-korrespondenta Viktora Anatolevicha Buravikhina, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2011, 242–247
[8] Dobrovol'skaya L. P., Dobrovol'skii N. M., Dobrovol'skii N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Some questions of the number-theoretic method in the approximate analysis”, Scientific notes of Orel state University, 2012, no. 6-2, Proceedings of the X international conference “Algebra and number theory: modern problems and applications”, 90–98
[9] L. P. Dobrovol'skaya, M. N. Dobrovol'skii, N. M. Dobrovol'skii, N. N. Dobrovol'skii, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107
[10] Dobrovol'skaya L. P., Dobrovol'skii N. M., Simonov A.S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1(25) (2008), 185–223 | Zbl
[11] Dobrovol'skii N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089-84, 1984
[12] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84, 1984
[13] Dobrovol'skii N. M., On quadrature formulas in classes $E_s^{\alpha}(c)$ and $H_s^{\alpha}(c)$, Dep. v VINITI, No 6091-84, 1984
[14] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Ph.D. Thesis, Tula, 1984
[15] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Abstract of Ph.D. dissertation, Moscow State Pedagogical University, M., 1985
[16] Dobrovol'skii N. M., “Number-theoretic meshes and their applications”, Teoriya chisel i ee prilozheniya, Tezisy dokladov Vsesoyuznoj konferentsii (Tbilisi, USSR, 1985), 67–70
[17] Korobov N. M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25
[18] Korobov N. M., “On approximate computation of multiple integrals”, Doklady Akademii nauk SSSR, 124:6 (1959), 1207–1210 | Zbl
[19] Korobov N. M., “Properties and calculation of optimal coefficients”, Doklady Akademii nauk SSSR, 132:5 (1960), 1009–1012 | Zbl
[20] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, 1963
[21] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., 2004
[22] Lokutsievskij O. V., Gavrikov M. B., The beginning of numerical analysis, TOO “Yanus”, M., 1995
[23] Ogorodnichuk N. K., Rebrov E. D., “Ob algoritme chislennogo integrirovaniya s pravilom ostanovki”, Materialy 7 mezhdunarodnoi konferentsii «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», Iz-vo TGPU im. L. N. Tolstogo, Tula, 2010, 153–158
[24] Ogorodnichuk N. K., Rebrov E. D., “POIVS TMK: Algoritmy integrirovaniya s pravilom ostanovki”, Mnogomasshtabnoe modelirovanie struktur i nanotekhnologii, Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi 190-letiyu so dnya rozhdeniya akademika Pafnutiya Lvovicha Chebysheva, stoletiyu so dnya rozhdeniya akademika Sergeya Vasilevicha Vonsovskogo i 80-letiyu so dnya rozhdeniya chlen-korrespondenta Viktora Anatolevicha Buravikhina, Iz-vo TGPU im. L. N. Tolstogo, Tula, 2011, 153–158
[25] E. D. Rebrov, “Dobrovol'skaya's algorithm and numerical integration”, Chebyshevskij sbornik, 10:1(29) (2009), 65–77
[26] E. D. Rebrov, Chebyshevskij sbornik, 13:3(43) (2012), 53–90 | Zbl
[27] Rebrova I. Yu., Dobrovolskii N. M., Dobrovolskii N. N., Balaba I. N., Esayan A. R., Basalov Yu. A., Teoretiko-chislovoi metod v priblizhennom analize i ego realizatsiya v POIVS «TMK», Monogr. V 2 ch., v. I, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 232 pp.
[28] Frolov K.K., “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Akademii nauk SSSR, 231:4 (1976), 818–821 | Zbl
[29] Frolov K.K., Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel'nyj tsentr Akademii Nauk SSSR, M., 1979
[30] Nikolay M. Dobrovolskiy, Larisa P. Dobrovolskaya, Nikolay N. Dobrovolskiy, Nadegda K. Ogorodnichuk, Evgenii D. Rebrov, “Algorithms fot computing optimal coefficients”, Book of abstracts of the International scientific conference “Computer Algebra and Information Technology” (Odessa, August 20–26, 2012), 22–24