Weighted number of points of algebraic net
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 200-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of trigonometric sums of algebraic grids with weights, which play a Central role in the modification of K. K. Frolov's method proposed by N. M. Dobrovolsky in 1984. The trigonometric sum of the algebraic grid with weights for the vector $\vec{m}=\vec{0}$ is naturally called the weighted number of points of the algebraic grid. In the introduction of this paper, the justification of the relevance of the research topic is proposed, the necessary definitions and facts from the modern theory of K. K. Frolov's method are given, an important theorem on the decomposition of the trigonometric sum of an algebraic grid with weights in a row by points of an algebraic grid is proved. In the section "Auxiliary lemmas" the necessary facts from the theory of weight functions of a special kind which play a principal role in modification of H. M. Dobrovolsky are given without proof. method K. K. Frolov. Using a theorem on the decomposition of the trigonometric sum of an algebraic grid with weights in a row by points of an algebraic grid and a Lemma on the value of a trigonometric integral of the weight function, we derive an asymptotic formula for the weighted number of points of an algebraic grid with a special weight function of order $2$, which States that such a number tends to unity. Similarly, it is shown that when the determinant of an algebraic lattice grows for any vector $\vec{m}\neq\vec{0}$, the trigonometric sum of algebraic grids with weights given by the special weight function tends to $0$. For simplicity, only the case of the simplest weight function of order $2$ is considered in the main text of the article. In conclusion, we formulate without proof similar statements about the values of trigonometric sums of algebraic grids with special weight functions of the order $r+1$ for any natural $R$. Namely, it is argued that for the weighted number of points of algebraic nets with a special weight function $r$ is true desire-to-$1$ with the residual member of the order $s-1$ of the logarithm of the determinant is an algebraic lattice, divided by $r+1$ the degree of the determinant is an algebraic lattice. A similar statement is true about the tendency to zero the trigonometric sum of an algebraic grid with weights given by a special weight function of the order $r+1$.
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2018_19_1_a14,
     author = {E. M. Rarova},
     title = {Weighted number of points of algebraic net},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {200--219},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/}
}
TY  - JOUR
AU  - E. M. Rarova
TI  - Weighted number of points of algebraic net
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 200
EP  - 219
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/
LA  - ru
ID  - CHEB_2018_19_1_a14
ER  - 
%0 Journal Article
%A E. M. Rarova
%T Weighted number of points of algebraic net
%J Čebyševskij sbornik
%D 2018
%P 200-219
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/
%G ru
%F CHEB_2018_19_1_a14
E. M. Rarova. Weighted number of points of algebraic net. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 200-219. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a14/

[1] Babenko K.I., Fundamentals of numerical analysis, Nauka, M., 1986

[2] Bakhvalov N.S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[3] Bocharova (Dobrovol'skaya) L.P., “Algorithms for finding the optimal coefficients”, Chebyshevskij sbornik, 8:1(21) (2007), 4–109

[4] A. S. Gertsog, E. D. Rebrov, E. V. Trikolich, “On K. K. Frolov's method in the theory of quadrature formulas”, Chebyshevskij sbornik, 10:2(30) (2009), 10–54

[5] A. S. Gertsog, “Chislennoe vychislenie chetyrekhkratnykh integralov po metodu Frolova s ispolzovaniem algebraicheskikh setok bikvadratichnogo polya Dirikhle $\mathbb{Q}(\sqrt2+\sqrt3)$”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2011, no. 3, 22–30

[6] A. S. Gertsog, “Parametrizatsiya chetyrekhmernoi setki bikvadratichnogo polya Dirikhle”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 23(188):5 (2011), 41–53

[7] A. S. Gertsog, “POIVS TMK: Bikvadratichnye polya i kvadraturnye formuly”, Mnogomasshtabnoe modelirovanie struktur i nanotekhnologii, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi 190-letiyu so dnya rozhdeniya akademika Pafnutiya Lvovicha Chebysheva, stoletiyu so dnya rozhdeniya akademika Sergeya Vasilevicha Vonsovskogo i 80-letiyu so dnya rozhdeniya chlen-korrespondenta Viktora Anatolevicha Buravikhina, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2011, 242–247

[8] Dobrovol'skaya L. P., Dobrovol'skii N. M., Dobrovol'skii N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Some questions of the number-theoretic method in the approximate analysis”, Scientific notes of Orel state University, 2012, no. 6-2, Proceedings of the X international conference “Algebra and number theory: modern problems and applications”, 90–98

[9] L. P. Dobrovol'skaya, M. N. Dobrovol'skii, N. M. Dobrovol'skii, N. N. Dobrovol'skii, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, 13:4(44) (2012), 4–107

[10] Dobrovol'skaya L. P., Dobrovol'skii N. M., Simonov A.S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1(25) (2008), 185–223 | Zbl

[11] Dobrovol'skii N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089-84, 1984

[12] Dobrovol'skii N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090-84, 1984

[13] Dobrovol'skii N. M., On quadrature formulas in classes $E_s^{\alpha}(c)$ and $H_s^{\alpha}(c)$, Dep. v VINITI, No 6091-84, 1984

[14] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Ph.D. Thesis, Tula, 1984

[15] Dobrovol'skii N. M., Number-theoretic meshes and their applications, Abstract of Ph.D. dissertation, Moscow State Pedagogical University, M., 1985

[16] Dobrovol'skii N. M., “Number-theoretic meshes and their applications”, Teoriya chisel i ee prilozheniya, Tezisy dokladov Vsesoyuznoj konferentsii (Tbilisi, USSR, 1985), 67–70

[17] Korobov N. M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[18] Korobov N. M., “On approximate computation of multiple integrals”, Doklady Akademii nauk SSSR, 124:6 (1959), 1207–1210 | Zbl

[19] Korobov N. M., “Properties and calculation of optimal coefficients”, Doklady Akademii nauk SSSR, 132:5 (1960), 1009–1012 | Zbl

[20] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, 1963

[21] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., 2004

[22] Lokutsievskij O. V., Gavrikov M. B., The beginning of numerical analysis, TOO “Yanus”, M., 1995

[23] Ogorodnichuk N. K., Rebrov E. D., “Ob algoritme chislennogo integrirovaniya s pravilom ostanovki”, Materialy 7 mezhdunarodnoi konferentsii «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», Iz-vo TGPU im. L. N. Tolstogo, Tula, 2010, 153–158

[24] Ogorodnichuk N. K., Rebrov E. D., “POIVS TMK: Algoritmy integrirovaniya s pravilom ostanovki”, Mnogomasshtabnoe modelirovanie struktur i nanotekhnologii, Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi 190-letiyu so dnya rozhdeniya akademika Pafnutiya Lvovicha Chebysheva, stoletiyu so dnya rozhdeniya akademika Sergeya Vasilevicha Vonsovskogo i 80-letiyu so dnya rozhdeniya chlen-korrespondenta Viktora Anatolevicha Buravikhina, Iz-vo TGPU im. L. N. Tolstogo, Tula, 2011, 153–158

[25] E. D. Rebrov, “Dobrovol'skaya's algorithm and numerical integration”, Chebyshevskij sbornik, 10:1(29) (2009), 65–77

[26] E. D. Rebrov, Chebyshevskij sbornik, 13:3(43) (2012), 53–90 | Zbl

[27] Rebrova I. Yu., Dobrovolskii N. M., Dobrovolskii N. N., Balaba I. N., Esayan A. R., Basalov Yu. A., Teoretiko-chislovoi metod v priblizhennom analize i ego realizatsiya v POIVS «TMK», Monogr. V 2 ch., v. I, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 232 pp.

[28] Frolov K.K., “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Akademii nauk SSSR, 231:4 (1976), 818–821 | Zbl

[29] Frolov K.K., Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel'nyj tsentr Akademii Nauk SSSR, M., 1979

[30] Nikolay M. Dobrovolskiy, Larisa P. Dobrovolskaya, Nikolay N. Dobrovolskiy, Nadegda K. Ogorodnichuk, Evgenii D. Rebrov, “Algorithms fot computing optimal coefficients”, Book of abstracts of the International scientific conference “Computer Algebra and Information Technology” (Odessa, August 20–26, 2012), 22–24