Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a13, author = {E. P. Ofitserov}, title = {Motif based sequence classification}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {187--199}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a13/} }
E. P. Ofitserov. Motif based sequence classification. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 187-199. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a13/
[1] Hochreiter S., Schmidhuber J., “Long short-term memory”, Neural computation, 9:8 (1997), 1735–1780 | DOI
[2] K. Cho et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, 2014, arXiv: 1406.1078
[3] J. Chung et al., Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014, arXiv: 1412.3555
[4] Karpathy A., Johnson J., Fei-Fei L., Visualizing and understanding recurrent networks, 2015, arXiv: 1506.02078
[5] H. Strobelt et al., “Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks”, IEEE transactions on visualization and computer graphics, 24:1 (2018), 667–676 | DOI
[6] H. Zeng et al., “Convolutional neural network architectures for predicting DNA-protein binding”, Bioinformatics, 32:12 (2016), i121–i127 | DOI
[7] Zhou J., Troyanskaya O. G., “Predicting effects of noncoding variants with deep learning-based sequence model”, Nature methods, 12:10 (2015), 931 | DOI
[8] J. Lanchantin et al., Deep motif: Visualizing genomic sequence classifications, 2016, arXiv: 1605.01133
[9] Quang D., Xie X., “DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences”, Nucleic acids research, 44:11 (2016), e107–e107 | DOI
[10] Levenshtein V. I., “Binary codes with correction of fallouts, inserts and notes”, Reports of the Academy of Sciences, 163:4 (1965), 845–848 (in Russian) | Zbl
[11] Smith T. F., Waterman M. S., “Comparison of biosequences”, Advances in applied mathematics, 2:4 (1981), 482–489 | DOI | MR | Zbl
[12] Gotoh O., “An improved algorithm for matching biological sequences”, Journal of molecular biology, 162:3 (1982), 705–708 | DOI
[13] Manavski S. A., Valle G., “CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment”, BMC bioinformatics, 9:2 (2008), S10 | DOI
[14] Ioffe S., Szegedy C., Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, arXiv: 1502.03167
[15] Hahnloser R. H. R. et al., “Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit”, Nature, 405:6789 (2000), 947 | DOI