Variety with fractional codimension growth
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 176-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to A.I. Maltsev, a set of linear algebras in which a fixed set of identities is called a variety. Using the language of the theory of Lie algebras, we say that the algebra is metabelian if it satisfies the identity $(xy)(zt)\equiv 0 $. A variety is called Specht if it is such a variety and any of its subvariety has a finite basis of identities. Codimension growth is determined by sequence of dimensions multilinear parts of a relatively free algebra of a variety. This sequence is called a sequence codimensions, referring to the multilinear spaces of the ideal identities of the variety. This article presents the results related to the problem of fractional polynomial growth. The review gives new examples of such varieties, and also give a new example of a variety with an infinite basis of identities.
Keywords: identity, variety, codimension, metabelian, shpecht.
@article{CHEB_2018_19_1_a12,
     author = {S. P. Mishchenko and O. V. Shulezhko},
     title = {Variety with fractional codimension growth},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {176--186},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a12/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - O. V. Shulezhko
TI  - Variety with fractional codimension growth
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 176
EP  - 186
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a12/
LA  - ru
ID  - CHEB_2018_19_1_a12
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A O. V. Shulezhko
%T Variety with fractional codimension growth
%J Čebyševskij sbornik
%D 2018
%P 176-186
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a12/
%G ru
%F CHEB_2018_19_1_a12
S. P. Mishchenko; O. V. Shulezhko. Variety with fractional codimension growth. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 176-186. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a12/

[1] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence, 2005, 352 pp. | DOI | MR | Zbl

[2] Mal'tsev A. I., “On algebras defined by identities”, Mat. Sb., 26(68):1 (1950), 19–33 (in Russian) | Zbl

[3] Drensky V., “Relations for the cocharacter sequences of T-ideals”, Proc. of the International Conference on Algebra Honoring A. Malcev, v. 2, Contemp. Math., 131, 1992, 285–300 | DOI | MR | Zbl

[4] Mishchenko S., Valenti A., “Codimension and colength sequences of algebras and growth phenomena”, Sao Paulo Journal of Mathematical Sciences, 10:2 (2016), 263–272 | DOI | MR | Zbl

[5] Giambruno A., Mishchenko S., Zaicev M., “Algebras with intermediate growth of the codimensions”, Adv. in Appl. Math., 37:3 (2006), 360–377 | DOI | MR | Zbl

[6] Mishchenko S. P., Zaicev M. V., “An example of a variety of Lie algebras with a fractional exponent”, Journal of Mathematical Sciences, 93:6 (1999), 977–982 | DOI | MR | Zbl

[7] Malyusheva O., Mishchenko S., Verevkin A., “Series of varieties of Lie algebras of different fractional exponents”, Compt. rend. Acad. Bulg. Sci., 66:3 (2013), 321–330 | MR | Zbl

[8] Bogdanchuk O. A., Mishchenko S. P., Verëvkin A. B., “On Lie algebras with exponential growth of the codimensions”, Serdica Math. J., 40:3–4 (2014), 209–240 | MR

[9] Mishchenko S.S., “New example of a variety of lie algebras with fractional exponent”, Moscow University Mathematics Bulletin, 66:6 (2011), 264–266 | DOI | MR | Zbl

[10] Giambruno A., Mishchenko S., Zaicev M., “Codimensions of Algebras and Growth Functions”, Advances in Mathematics, 217:3 (2008), 1027–1052 | DOI | MR | Zbl

[11] Zaicev M., “On existence of PI-exponents of codimension growth”, Electron. Res. Announc. Math. Sci., 21 (2014), 113–119 | MR | Zbl

[12] Zaicev M., Mishchenko S., “The example of linear algebras variety with fractional polynomial growth”, Vestn. Mosk. Univ., ser. I, 2008, no. 1, 25–31 (in Russian) | Zbl

[13] Mishchenko S. P., “The example of linear algebras variety with fractional polynomial growth less than 3”, Vestn. Mosk. Univ., ser. I, 2013, no. 3, 51–54 (in Russian)

[14] A. Giambruno et al., “Polynomial codimension growth and Specht problem”, Journal of Algebra, 469 (2017), 421–436 | DOI | MR | Zbl

[15] Giambruno A., Mishchenko S. P., “Polynomial growth of the codimensions: A characterization”, Proc. Amer. Math. Soc. 2010, 138:3, 853–859 | DOI | MR | Zbl

[16] Mishchenko S.P., Verevkin A.B., “On varieties with identities of one generated free metabelian algebra”, Chebyshevskii sbornik, 17:2 (58) (2016), 21–55 (in Russian) | DOI | MR

[17] Drenski V.S., “Representations of the symmetric group and varieties of linear algebras”, Math. USSR Sbornik, 43:1 (1982), 85–101 | MR | Zbl