Analysis of plasticity theory equations of powder metal systems
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 152-166

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides the review of calculation method and basic parameters of moulding processes in dilatant materials which are typical representatives of powder metal systems of different chemical compositions. They are based on mathematical models that use not only qualitative explanation, but also quantitative description of the dilatancy effect. The work shows the complete system of basic plasticity theory equations of the rigid-plastic isotropic dilatant media. It considers an example of the steady-state plastic flow calculation under conditions of axisymmetric deformation. It is shown that for axisymmetric deformation the equations relative to velocity vector projection on the characteristic directions are similar to the equations for planar deformation. It is established that the current yield conditions with varying degrees of accuracy describe the types of dilatancy (loosening and compaction). Therefore, for a more precise solution of some problems, it is necessary to refine the mathematical models of the yield condition. For some processes of plastic shaping when solving the system of equations of dilatant media, it is expedient to represent the flow conditions in the form of separate regions: hyperbolic, parabolic and elliptic.
Keywords: dilatant medium, axisymmetric deformation, complete system of equations, condition of fluidity, characteristics of the yield curve, powder metal system.
@article{CHEB_2018_19_1_a10,
     author = {E. S. Makarov and A. E. Gvozdev and G. M. Zhuravlev and A. G. Kolmakov and A. N. Sergeev and S. V. Sapozhnikov and A. D. Breki and D. V. Maliy and N. N. Dobrovolsky},
     title = {Analysis of plasticity theory equations of powder metal systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {152--166},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/}
}
TY  - JOUR
AU  - E. S. Makarov
AU  - A. E. Gvozdev
AU  - G. M. Zhuravlev
AU  - A. G. Kolmakov
AU  - A. N. Sergeev
AU  - S. V. Sapozhnikov
AU  - A. D. Breki
AU  - D. V. Maliy
AU  - N. N. Dobrovolsky
TI  - Analysis of plasticity theory equations of powder metal systems
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 152
EP  - 166
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/
LA  - ru
ID  - CHEB_2018_19_1_a10
ER  - 
%0 Journal Article
%A E. S. Makarov
%A A. E. Gvozdev
%A G. M. Zhuravlev
%A A. G. Kolmakov
%A A. N. Sergeev
%A S. V. Sapozhnikov
%A A. D. Breki
%A D. V. Maliy
%A N. N. Dobrovolsky
%T Analysis of plasticity theory equations of powder metal systems
%J Čebyševskij sbornik
%D 2018
%P 152-166
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/
%G ru
%F CHEB_2018_19_1_a10
E. S. Makarov; A. E. Gvozdev; G. M. Zhuravlev; A. G. Kolmakov; A. N. Sergeev; S. V. Sapozhnikov; A. D. Breki; D. V. Maliy; N. N. Dobrovolsky. Analysis of plasticity theory equations of powder metal systems. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 152-166. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/