Analysis of plasticity theory equations of powder metal systems
Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 152-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides the review of calculation method and basic parameters of moulding processes in dilatant materials which are typical representatives of powder metal systems of different chemical compositions. They are based on mathematical models that use not only qualitative explanation, but also quantitative description of the dilatancy effect. The work shows the complete system of basic plasticity theory equations of the rigid-plastic isotropic dilatant media. It considers an example of the steady-state plastic flow calculation under conditions of axisymmetric deformation. It is shown that for axisymmetric deformation the equations relative to velocity vector projection on the characteristic directions are similar to the equations for planar deformation. It is established that the current yield conditions with varying degrees of accuracy describe the types of dilatancy (loosening and compaction). Therefore, for a more precise solution of some problems, it is necessary to refine the mathematical models of the yield condition. For some processes of plastic shaping when solving the system of equations of dilatant media, it is expedient to represent the flow conditions in the form of separate regions: hyperbolic, parabolic and elliptic.
Keywords: dilatant medium, axisymmetric deformation, complete system of equations, condition of fluidity, characteristics of the yield curve, powder metal system.
@article{CHEB_2018_19_1_a10,
     author = {E. S. Makarov and A. E. Gvozdev and G. M. Zhuravlev and A. G. Kolmakov and A. N. Sergeev and S. V. Sapozhnikov and A. D. Breki and D. V. Maliy and N. N. Dobrovolsky},
     title = {Analysis of plasticity theory equations of powder metal systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {152--166},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/}
}
TY  - JOUR
AU  - E. S. Makarov
AU  - A. E. Gvozdev
AU  - G. M. Zhuravlev
AU  - A. G. Kolmakov
AU  - A. N. Sergeev
AU  - S. V. Sapozhnikov
AU  - A. D. Breki
AU  - D. V. Maliy
AU  - N. N. Dobrovolsky
TI  - Analysis of plasticity theory equations of powder metal systems
JO  - Čebyševskij sbornik
PY  - 2018
SP  - 152
EP  - 166
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/
LA  - ru
ID  - CHEB_2018_19_1_a10
ER  - 
%0 Journal Article
%A E. S. Makarov
%A A. E. Gvozdev
%A G. M. Zhuravlev
%A A. G. Kolmakov
%A A. N. Sergeev
%A S. V. Sapozhnikov
%A A. D. Breki
%A D. V. Maliy
%A N. N. Dobrovolsky
%T Analysis of plasticity theory equations of powder metal systems
%J Čebyševskij sbornik
%D 2018
%P 152-166
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/
%G ru
%F CHEB_2018_19_1_a10
E. S. Makarov; A. E. Gvozdev; G. M. Zhuravlev; A. G. Kolmakov; A. N. Sergeev; S. V. Sapozhnikov; A. D. Breki; D. V. Maliy; N. N. Dobrovolsky. Analysis of plasticity theory equations of powder metal systems. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 152-166. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a10/

[1] Nikolayevskiy V. N. (ed.), Defining laws of soil mechanics, Collection of articles, Mir, M., 1975, 230 pp.

[2] Vyalov S. S., Rheological basis of soil mechanics, Vysshaya shkola, M., 1978, 448 pp.

[3] Vinogradov G. A., Katashinskiy V. P., The theory of sheet rolling of metal powders and granules, Metallurgiya, M., 1979, 224 pp.

[4] Perel'man V. E., Molding of powder materials, Metallurgiya, M., 1979, 232 pp.

[5] Makarov E. S., “On the theory of forming metallic powders under conditions of plane deformation”, Izvestiya Vuzov, Mashinostroenie, 1973, no. 10, 158–162 | Zbl

[6] Pavlov V. A., Kiparisov S. S., Shcherbina V. V., Pressure treatment of non-ferrous metal powders, Metallurgiya, M., 1977, 176 pp.

[7] Kolikov A. P., Polukhin P. I., Krupin A. V., New processes of deformation of metals and alloys, Vysshaya shkola, M., 1986, 352 pp.

[8] Mitin B. S., Powder metallurgy and sprayed coatings, ed. B.S. Mitin, Metallurgiya, M., 1987, 792 pp.

[9] Bogoyavlenskiy K. N., Ris V. V. (red.), Economical methods for detail formation, Lenizdat, L., 1984, 144 pp.

[10] Kachanov L. M., Fundamentals of the plasticity theory, Nauka, M., 1969, 420 pp.

[11] Makarov E. S., Gubanov A. V., “Construction of mathematical models of the axisymmetric deformation processes of dilating media”, Matematicheskiye metody v tekhnike i tekhnologiyakh, NSU Publishing house, Veliky Novgorod, 1999, 127–128

[12] Zhuravlev G. M., Chan Dyk Khoan, “Approach to the problem solution of plastic detail forming of dilatable materials”, Izvestiya TulGU. Seriya. Tekhnicheskiye nauki, 2011, no. 6-2, 301–309

[13] Makarov E. S., Tolokonnikov L. A., “Variant of constructing the plasticity theory of dilatating medium”, Izvestiya AN SSSR, Mekhanika tverdogo tela, 1979, no. 1, 88–93

[14] Kurant R., Gilbert D., Methods of mathematical physics, Gostekhizdat, M.–L., 1945, 620 pp.

[15] E.S. Makarov, A.E. Gvozdev, G.M. Zhuravlev, The plasticity theory of dilatant media, monograph, 2nd ed., revis. and addit., ed. A.E. Gvozdev, Publishing House of Tula State University, Tula, 2015, 337 pp.

[16] A.E. Gvozdev, G.M. Zhuravlev, A.G. Kolmakov, D.A. Provotorov, N.N. Sergeev, “Deformation damageability calculation in the processes of reverse extrusion of metal products”, Tekhnologiya metallov, 2016, no. 1, 23–32

[17] G.M. Zhuravlev, A.E. Gvozdev, N.N. Sergeev, D.A. Provotorov, “Variant of calculating the maximum hardening of low-carbon steels in plastic deformation processes”, Proizvodstvo prokata, 2016, no. 7, 9–13

[18] G.M. Zhuravlev, A.E. Gvozdev, V.I. Zolotukhin, D.A. Provotorov, “Extraction with thinning of anisotropic reinforcing material”, Proizvodstvo prokata, 2016, no. 4, 5–10

[19] A.D. Breki, A.L. Didenko, V.V. Kudryavtsev, E.S. Vasilyeva, O.V. Tolochko, A.G. Kolmakov, A.E. Gvozdev, D.A. Provotorov, N.E. Starikov, Yu.A. Fadin, “Synthesis and tribotechnical properties of a composite coating with a matrix of polyimide (P-OOO)FT and a filler made of nanoparticles of tungsten disulfide with dry sliding friction”, Materialovedeniye, 2016, no. 4, 44–48

[20] A.D. Breki, A.L. Didenko, V.V. Kudryavtsev, E.S. Vasilyeva, O.V. Tolochko, A.E. Gvozdev, N.N. Sergeev, D.A. Provotorov, N.E. Starikov, Yu.A. Fadin, A.G. Kolmakov, “Composite coatings based on polyimide A-OOO and nanoparticles WS${}_{2}$ with increased tribotechnical characteristics under conditions of dry sliding friction”, Materialovedeniye, 2016, no. 5, 41–44

[21] A.D. Breki, A.E. Gvozdev, A.G. Kolmakov, “Use of the generalized Pascal triangle for describing the oscillations of frictional force of materials”, Materialovedeniye, 2016, no. 11, 3–8

[22] A.E. Gvozdev, N.N. Sergeev, I.V. Minaev, A.G. Kolmakov, I.V. Tikhonova, A.N. Sergeev, D.A. Provotorov, D.M. Khonilidze, D.V. Maliy, I.V. Golyshev, “Temperature distribution and structure in the heat-affected zone for steel sheets after laser cutting”, Materialovedeniye, 2016, no. 9, 3–7

[23] A.D. Breki, A.E. Gvozdev, A.G. Kolmakov, N.E. Starikov, D.A. Provotorov, N.N. Sergeev, D.M. Khonelidze, “On frictional interaction of metallic materials taking into account the superplasticity phenomenon”, Materialovedeniye, 2016, no. 8, 21–25

[24] G.M. Zhuravlev, A.E. Gvozdev, A.E. Cheglov, N.N. Sergeev, O.M. Gubanov, “Maximum plastic strengthening in tool steels”, Steel in Translation, 47:6 (2017), 399–411 | DOI

[25] E.S. Makarov, V.E. Ulchenkova, A.E. Gvozdev, N.N. Sergeev, A.N. Sergeev, Coupled fields in elastic, plastic, bulk media and metallic hard-deformed systems, monograph, ed. A.E. Gvozdev, Publishing House of Tula State University, Tula, 2016, 526 pp.

[26] Gvozdev A. Ye., Zhuravlev G. M., Kolmakov A. G., “Formation of carbon steels mechanical properties in drawing processes with thinning”, Tekhnologiya metallov, 2015, no. 11, 17–29

[27] E.S. Makarov, A.E. Gvozdev, G.M. Zhuravlev, A.N. Sergeev, I.V. Minayev, A.D. Breki, A.D. Maliy, “Application of the plasticity theory of dilatation media to the processes of metallic systems powders compaction”, Chebyshevskiy sbornik, 18:4 (2017), 1–17

[28] Gvozdev A. Ye., Zhuravlev G. M., Sapozhnikov S. V., “To the theoretical analysis of the process of compacting powdered materials by pressing”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o zemle, 2017, no. 4, 273–283