Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2018_19_1_a1, author = {I. V. Bondareva and M. Yu. Luchin and V. Kh. Salikhov}, title = {Symmetrized polynomials in a problem of estimating of the irrationality measure of number $\ln 3$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {15--25}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a1/} }
TY - JOUR AU - I. V. Bondareva AU - M. Yu. Luchin AU - V. Kh. Salikhov TI - Symmetrized polynomials in a problem of estimating of the irrationality measure of number $\ln 3$ JO - Čebyševskij sbornik PY - 2018 SP - 15 EP - 25 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a1/ LA - ru ID - CHEB_2018_19_1_a1 ER -
%0 Journal Article %A I. V. Bondareva %A M. Yu. Luchin %A V. Kh. Salikhov %T Symmetrized polynomials in a problem of estimating of the irrationality measure of number $\ln 3$ %J Čebyševskij sbornik %D 2018 %P 15-25 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a1/ %G ru %F CHEB_2018_19_1_a1
I. V. Bondareva; M. Yu. Luchin; V. Kh. Salikhov. Symmetrized polynomials in a problem of estimating of the irrationality measure of number $\ln 3$. Čebyševskij sbornik, Tome 19 (2018) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/CHEB_2018_19_1_a1/
[1] Wu Q., Wang L., “On the irrationality measure of $\log3$”, Journal of Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl
[2] Rhin G., “Approximants de Pade et mesures effectives d' irrationalite”, Seminaire de Theorie des Nombres (Paris 1985–1986), Progress i Mathematics, 71, Birkhauser, Boston, 1987, 155–164 | DOI | MR
[3] Salikhov V. H., “On the measure of irrationality $\ln3$”, Doklady Mathematics, 47:6 (2007), 753–755 | Zbl
[4] Baker A., Wüstolz G., “Logarithmic forms and group varieties”, J. Reine Angew. Math., 442 (1993), 19–62 | MR | Zbl
[5] Heimonen A., Matala-aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81:1 (1993), 183–202 | DOI | MR | Zbl
[6] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. Comput., 72:242 (2002), 901–911 | DOI | MR
[7] Rhin G., Toffin P., “Approximants de Padé simultanés de logaritmes”, J. Number Theory, 24 (1986), 284–297 | DOI | MR | Zbl
[8] Zudilin V. V., “An essay on irrationality measures of $\pi$ and other logarithms”, Chebyshevskij sbornik, 5:2 (2004), 49–65
[9] Salikhov V. H., “On the measure of irrationality of a number $\pi$”, Mathematical Notes, 88:4 (2010), 583–593 | DOI | Zbl
[10] Zolotukhina E. S., dis. kand. fiz.-mat. nauk, Bryansk, 2009, 100 pp.
[11] Sal'nikova E. S., “Approximations of some logarithms by numbers from fields $\mathbb{Q}$ and $\mathbb{Q}(\sqrt{d})$”, Fundam. i prikl. matematika, 16:6 (2010), 139–155
[12] Luchin M. Y., “On Diophantine approximations of some logarithms”, Vestnik Bryanskogo gosudarstvennogo universiteta, 2012, no. 4 (2), 22–28
[13] Luchin M. Y., “Measure of irrationality of a number $\ln\frac{7}{4}$”, Chebyshevskij sbornik, 14:2 (2013), 123–131
[14] Tomashevskaya E. B., “On Diophantine approximations of function values $\log{x}$”, Fundam. i prikl. matematika, 16:6 (2010), 157–166
[15] Hata M. Rational approximations to $\pi$ and some other numbers, Acta Arith., LXIII:4 (1993), 335–349 | DOI | MR | Zbl