Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_4_a9, author = {V. S. Zhgoon}, title = {On generalized {Jacobians} and rational continued fractions in the hyperelliptic fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {209--221}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a9/} }
V. S. Zhgoon. On generalized Jacobians and rational continued fractions in the hyperelliptic fields. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 209-221. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a9/
[1] Mumford D., Tata Lectures on Theta I, Birkhauser, Boston, 1983 | MR | Zbl
[2] Serre Jean-Pierre, Algebraic groups and class fields, Springer-Verlag, New York, 1988 | MR | Zbl
[3] Artin E., “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 171:19:1 (1924), 153–246 | DOI | MR
[4] Benyash–Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl
[5] Berry T. G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch Math. 1990, 55, 259–266 | MR | Zbl
[6] Platonov V. P., Zhgoon V. S., Fedorov G. V., “S-units and periodicity of continued fractions in hyperelliptic fields”, Doklady Mathematics, 92:3 (2015), 752–756 | DOI | DOI | MR | Zbl | Zbl
[7] Platonov V.S., Fedorov G.V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Doklady Mathematics, 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl | Zbl
[8] Rosenlicht M., “Generalized Jacobian varieties”, Ann. of Math., 59:3 (1954), 505–530 | DOI | MR | Zbl
[9] Rosenlicht M., “Equivalence relations on algebraic curves”, Ann. of Math. 1952, 56:2, 169–191 | MR | Zbl
[10] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl
[11] Platonov V. P., Zhgun V. S., Petrunin M. M., “On the simplicity of Jacobians for hyperelliptic curves of genus 2 over the field of rational numbers with torsion points of high order”, Dokl. Math., 450:4 (2013), 385–388 | DOI | Zbl
[12] Platonov V. P., “Arithmetic of quadratic fields and torsion in Jacobians”, Dokl. Math., 81:1 (2010), 55–57 | DOI | MR | Zbl
[13] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl
[14] Platonov V. P., Petrunin M. M., “New orders of torsion points in Jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 85:2 (2012), 286–288 | DOI | MR | Zbl
[15] Platonov V. P., Petrunin M. M., “On the torsion problem in jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 86:2 (2012), 642–643 | DOI | MR | Zbl