The zeta-function is the monoid of natural numbers with unique factorization
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 188-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a new class of Dirichlet series, the zeta functions of monoids of natural numbers. The inverse Dirichlet series for the zeta function of monoids of natural numbers are studied. It is shown that the existence of an Euler product for the zeta function of a monoid is related to the uniqueness of the factorization into prime factors in this monoid. The notion of coprime sets of natural numbers is introduced and it is shown that for such sets the multiplicativity of minimal monoids and corresponding zeta-functions of monoids takes place. It is shown that if all prime elements of a monoid are prime numbers, then the characteristic function of the monoid is a multiplicative function and in this case the zeta function of the monoid is a generalized L-function. Various examples of monoids and corresponding zeta functions of monoids are considered. The relation between the inversion of the zeta function of a monoid and the generalized MГ¶bius function on a monoid as a partially ordered set is studied by means of the divisibility of natural numbers. A number of properties of the zeta functions of monoids of natural numbers with a unique decomposition into prime factors are obtained. The paper deals with taking the logarithm of an Eulerian product as a function of a complex argument. It is shown that a continuous function that determines the value of the logarithm of an Euler product runs through all branches of the infinite-valued function of the logarithm near its pole. The corollaries on the value of a complex-valued function of a special form near a singular point are obtained. These properties imply statements about the values of the Riemann zeta function near the boundary of the region of absolute convergence. Using Bertrand's postulate, infinite exponential sequences of prime numbers are introduced. It is shown that corresponding zeta-functions of monoids of natural numbers converge absolutely in the whole half-plane with a positive real part. Since such zeta-functions of monoids of natural numbers can be decomposed into an Euler product in the whole region of absolute convergence, they do not have zeros in the entire half-plane with a positive real part. In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, logarithm of the Euler product.
@article{CHEB_2017_18_4_a8,
     author = {N. N. Dobrovol'skii},
     title = {The zeta-function is the monoid of natural numbers with unique factorization},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {188--208},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a8/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
TI  - The zeta-function is the monoid of natural numbers with unique factorization
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 188
EP  - 208
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a8/
LA  - ru
ID  - CHEB_2017_18_4_a8
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%T The zeta-function is the monoid of natural numbers with unique factorization
%J Čebyševskij sbornik
%D 2017
%P 188-208
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a8/
%G ru
%F CHEB_2017_18_4_a8
N. N. Dobrovol'skii. The zeta-function is the monoid of natural numbers with unique factorization. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 188-208. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a8/

[1] Ajgner M., Kombinatornaja teorija, Izd-vo Mir, M., 1982, 558 pp.

[2] Bombieria E., Ghoshb A., “Around the Davenport–Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) (2011), 15–66 | DOI

[3] Voronin S. M., Izbrannye trudy: Matematika, ed. A. A. Karacuba, Izd-vo MGTU im. N. Je. Baumana, M., 2006, 480 pp.

[4] Voronin S. M., Karacuba A. A., Dzeta-funkcija Rimana, Izd-vo Fizmatlit, M., 1994, 376 pp.

[5] Dobrovol'skaja L. P., Dobrovol'skij M. N., Dobrovol'skij N. M., Dobrovol'skij N. N., “Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal'nyh kojefficientov”, Chebyshevskii Sbornik, 13:4(44) (2012), 4–107

[6] Dobrovol'skij M. N., “Funkcional'noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok”, Doklady akademii nauk, 412:3 (2007), 302–304 | Zbl

[7] Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol'skaya L. P., Bocharova O. E., “On hyperbolic Hurwitz zeta function”, Chebyshevskii Sbornik, 17:3 (2016), 72–105 | DOI

[8] Davenport H., Mul'tiplikativnaja teorija chisel, Izd-vo Nauka, M., 1971, 200 pp.

[9] Gurvic A., Kurant R., Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.

[10] Prahar K., Raspredelenie prostyh chisel, per. s nem., Izd-vo Mir, M., 1967, 511 pp.

[11] Privalov I. I., Vvedenie v teoriju funkcij kompleksnogo peremennogo, Izd-vo Nauka, M., 1977, 444 pp.

[12] Stenli R., Perechislitel'naja kombinatorika, Izd-vo Mir, M., 1990, 440 pp.

[13] Titchmarsh E. K., Teorija dzeta-funkcii Rimana, Izd-vo IL, M., 1952, 407 pp.

[14] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[15] Chandrasekharan K., Arifmeticheskie funkcii, per. s angl., Izd-vo Nauka, M., 1975, 272 pp.

[16] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[17] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl