On fractional moments of the mollified Dirichlet $L$-functions
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 168-187

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\chi_1(n)$ be the character of Dirichlet mod 5 such that $\chi_1(2)=i$, $$ \varkappa=\frac{\sqrt{10-2 \sqrt{5}}-2}{\sqrt{5}-1}. $$ Davenport–Heilbronn function is defined below $$ f(s)=\frac{1-i\varkappa}{2}L(s,\chi_1)+\frac{1+i\varkappa}{2}L(s,\overline{\chi}_1). $$ The function $f(s)$ was introduced and investigated by Davenport and Heilbronn, in 1936. It satisfies the functional equation of Riemann's type $$ g(s)=g(1-s), $$ where $g(s)=(\frac{\pi}{5})^{-s/2}\Gamma(\frac{1+s}{2})f(s)$. It is well-known however, that not all non-trivial zeros of $f(s)$ lie on the line $\Re s=\frac{1}{2}$. In the region $\Re s>1$, $0\Im s\le T$ the number of zeros of $f(s)$ exceeds $cT$, where $c>0$ is an absolute constant (Davenport and Heilbronn, 1936). Moreover, the number of zeros of $f(s)$ in the region $\frac{1}{2}\sigma_1\Re s\sigma_2$, $0\Im s\le T$ exceeds $c_1T$, where $c>0$ is an absolute constant(S. M. Voronin, 1976). In 1980, S. M. Voronin proved that «abnormally many» zeros of $f(s)$ lied on the critical line $\Re s=\frac{1}{2}$. Let $N_{0,f}(T)$ be the number of zeros of $f(s)$ on the segment $\Re s=\frac{1}{2}$, $0\Im s\le T$. S. M. Voronin got the estimate $$ N_{0,f}(T)>c_2T\exp\{\frac{1}{20}\sqrt{\log\log\log\log T}\}, $$ where $c_2>0$ is an absolute constant. In 1990, A. A. Karatsuba significantly improved Voronin's estimate and got the inequality $$ N_{0,f}(T)>T(\log T)^{1/2-\varepsilon}, $$ where $\varepsilon>0$ is an arbitrary small constant, $T>T_0(\varepsilon)>0$. In 1994, A. A. Karatsuba got somewhat more accurate estimate $$ N_{0,f}(T)>T(\log T)^{1/2}\exp\{-c_3\sqrt{\log\log T}\}, $$ where $c_3>0$ is an absolute constant. In 2017, the author got the following estimate $$ N_{0,f}(T)> T (\log T)^{1/2+1/16-\varepsilon}\quad (\varepsilon>0). $$ In this paper we obtain new upper and lower estimates of the fractional moments of mollified Dirichlet series, from which it follows that $$ N_{0,f}(T)> T (\log T)^{1/2+1/12-\varepsilon}\quad (\varepsilon>0). $$
Keywords: Davenport–Heilbronn function, zeroes on the critical line, fractional moments of mollified moments of Dirichlet series.
@article{CHEB_2017_18_4_a7,
     author = {S. A. Gritsenko},
     title = {On fractional moments of the mollified {Dirichlet} $L$-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {168--187},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a7/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - On fractional moments of the mollified Dirichlet $L$-functions
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 168
EP  - 187
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a7/
LA  - ru
ID  - CHEB_2017_18_4_a7
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T On fractional moments of the mollified Dirichlet $L$-functions
%J Čebyševskij sbornik
%D 2017
%P 168-187
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a7/
%G ru
%F CHEB_2017_18_4_a7
S. A. Gritsenko. On fractional moments of the mollified Dirichlet $L$-functions. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 168-187. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a7/