Distribution of zeros of nondegenerate functions on short cuttings
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents newly obtained upper and lower bounds for the number of zeros for functions of a special type, as well as an estimate for the measure of the set where these functions attain small values. Let $f_1\left(x\right), \ ..., \ f_n\left(x\right)$ be functions differentiable on the interval $I$, $n+1$ times and Wronskian from derivatives almost everywhere on $I$ is different from 0. Such functions are called nondegenerate. The problem of the distribution of the zeros of the function $F\left(x\right)=a_nf_n\left(x\right)+\dots+ a_1f_1\left(x\right)+a_0, \ a_j\in Z, \ 1\leq j \leq n$ is important in the metric theory of Diophantine approximations. Let $Q>1$ be a sufficiently large integer, and the interval $I$ has length $Q^{-\gamma}, \ 0\leq \gamma 1$. We obtain upper and lower bounds for the number of zeros of the function $F\left(x\right)$ on the interval $I$, with $\left|a_j\right|\leq Q, \ 0 \leq\gamma1$. For $\gamma=0$ such estimates were obtained by A. S. Pyartli, V. G. Sprindzhuk, V. I. Bernik, V. V. Beresnevitch, N. V. Budarina.
Keywords: nondegenerate functionsons, zeros of nondegenerate functionsons.
@article{CHEB_2017_18_4_a3,
     author = {V. I. Bernik and N. V. Budarina and A. V. Lunevich and H. O'Donnel},
     title = {Distribution of zeros of nondegenerate functions on short cuttings},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - N. V. Budarina
AU  - A. V. Lunevich
AU  - H. O'Donnel
TI  - Distribution of zeros of nondegenerate functions on short cuttings
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 107
EP  - 115
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/
LA  - ru
ID  - CHEB_2017_18_4_a3
ER  - 
%0 Journal Article
%A V. I. Bernik
%A N. V. Budarina
%A A. V. Lunevich
%A H. O'Donnel
%T Distribution of zeros of nondegenerate functions on short cuttings
%J Čebyševskij sbornik
%D 2017
%P 107-115
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/
%G ru
%F CHEB_2017_18_4_a3
V. I. Bernik; N. V. Budarina; A. V. Lunevich; H. O'Donnel. Distribution of zeros of nondegenerate functions on short cuttings. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 107-115. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/

[1] Ibragimov I. A., Maslova N. B., “On the Expected Number of Real Zeros of Random Polynomials. II. Coefficients With Non-Zero Means”, Theory Probab. Appl., 16 (1971), 486–493 | MR

[2] Zaporozhets D. N., Ibragimov I. A., “On random surface area”, Journal of Mathematical Sciences, 176 (2010), 190–202 | DOI

[3] Bernik V. I., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 21–42 | DOI | Zbl

[4] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:8 (1999), 97–112 | DOI | MR | Zbl

[5] Beresnevich V., Bernik V., “On a metrical theorem of W. Shmidt”, Acta Arith., 75 (1996), 219–233 | DOI | MR | Zbl

[6] Beresnevich V. A., “Grasher type theorem for convergence on maifolds”, Acta Matth. Hung., 94:1—2 (2002), 99–130 | DOI | MR | Zbl

[7] Baker R., “Metric diophantine approximation on manifolds”, J. Lond. Math. Soc., 14 (1976), 43–48 | DOI | MR | Zbl

[8] Berink V., “On the exact order of approximation of zero by the values of integer-valued polynomials”, Acta. Arith., 53:1 (1989), 17–28 | DOI | MR

[9] Berink V., Kleinbok D., Marguli Y., “Khinchine-type theorems on manifolds: the convergence case for standart and multiplicative versions”, Jntern. Math. Res., 9 (2001), 453–486 | MR

[10] Berink V., Götze F., “Distribution of real algebraic numbers of arbitary degree in short intervals”, Jzv. Math. RAN, 79:1 (2015), 18–39 | MR

[11] Berink V., Gusakova A., Götze F., “On ponts with algebraically conjugate coordinates close to smooth curves”, Moscow Journal of Combinations and Number Theory, 6:2–3 (2016), 56–101 | MR

[12] Kleinbok D., Margulis G., “Flow on homogeneous spaces and Diophantine approximation on manifolds”, Ann. of Math., 148:2 (1998), 339–360 | DOI | MR

[13] Mahker K., “Über das Mass der Menge aller S-Zhlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR

[14] Pyartly A., “Diophantine approximation on submanifolds of euclidion space”, Funk. Analis and its application, 3:4 (1969), 303–306 | DOI | MR

[15] Shmidt W., “Metrische Satze über simultane Approximationen abhangiger Grossen”, Monatsh. Math., 68 (1964), 145–166 | MR

[16] Sprindzuk V., “Achievements and problems of the theory of Diophantine approximations”, Uspekhi mat. Baur., 35:4 (1980), 3–68 | MR

[17] Sprindzuk V., Mahler problem in metric theory numbers, Eng. trans., Amer. Math. Soc., Providence, 1969 | MR

[18] Götze F., Koleda D., Zaporozhets D., “Distribution of complex algebraic numbers”, Proc. Amer. Math. Soc., 145:1 (2017), 61–71 | DOI | MR | Zbl

[19] Bernik A., Götzeb F., Kukso O., “Bad-approximable points and distribution of discriminants of the product of linear integer polynomials”, Chebyshevskii Sbornik, 8:2 (2007), 140–147 | MR | Zbl

[20] Bernik A., Götzeb F., Gusakova A., “On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves”, Zapiski POMI, 2016, 14–47 | MR

[21] Beresnevich V., Bernik V., Götze F., “Integral polynomials with small discriminants and resultants”, Adv. Math., 298 (2016), 393–412 | DOI | MR | Zbl

[22] Koleda D. V., “On the density function of the distribution of real algebraic numbers”, Journal de Theorie des Nombres de Bordeaux, 29 (2017), 179–200 | DOI | MR | Zbl