Distribution of zeros of nondegenerate functions on short cuttings
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 107-115

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents newly obtained upper and lower bounds for the number of zeros for functions of a special type, as well as an estimate for the measure of the set where these functions attain small values. Let $f_1\left(x\right), \ ..., \ f_n\left(x\right)$ be functions differentiable on the interval $I$, $n+1$ times and Wronskian from derivatives almost everywhere on $I$ is different from 0. Such functions are called nondegenerate. The problem of the distribution of the zeros of the function $F\left(x\right)=a_nf_n\left(x\right)+\dots+ a_1f_1\left(x\right)+a_0, \ a_j\in Z, \ 1\leq j \leq n$ is important in the metric theory of Diophantine approximations. Let $Q>1$ be a sufficiently large integer, and the interval $I$ has length $Q^{-\gamma}, \ 0\leq \gamma 1$. We obtain upper and lower bounds for the number of zeros of the function $F\left(x\right)$ on the interval $I$, with $\left|a_j\right|\leq Q, \ 0 \leq\gamma1$. For $\gamma=0$ such estimates were obtained by A. S. Pyartli, V. G. Sprindzhuk, V. I. Bernik, V. V. Beresnevitch, N. V. Budarina.
Keywords: nondegenerate functionsons, zeros of nondegenerate functionsons.
@article{CHEB_2017_18_4_a3,
     author = {V. I. Bernik and N. V. Budarina and A. V. Lunevich and H. O'Donnel},
     title = {Distribution of zeros of nondegenerate functions on short cuttings},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - N. V. Budarina
AU  - A. V. Lunevich
AU  - H. O'Donnel
TI  - Distribution of zeros of nondegenerate functions on short cuttings
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 107
EP  - 115
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/
LA  - ru
ID  - CHEB_2017_18_4_a3
ER  - 
%0 Journal Article
%A V. I. Bernik
%A N. V. Budarina
%A A. V. Lunevich
%A H. O'Donnel
%T Distribution of zeros of nondegenerate functions on short cuttings
%J Čebyševskij sbornik
%D 2017
%P 107-115
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/
%G ru
%F CHEB_2017_18_4_a3
V. I. Bernik; N. V. Budarina; A. V. Lunevich; H. O'Donnel. Distribution of zeros of nondegenerate functions on short cuttings. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 107-115. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a3/