On interpolation of functions of several variables
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 339-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we constructed effective multivariate interpolation formulas for periodic functions, which are the precise on the Fourier polynomial classes. This paper continues investigations by N.M. Korobov [5], V.S. Rjaben'kii [11], S.M. Voronin [8], and others scientists on the application of the number-theoretic methods in numerical analysis. These authors was given the number of knots of a network equals to a prime number in the ring of integer rational numbers and in rings of integer numbers in algebraic numbers. Here we consider the class of strictly regular periodic functions $f(x_1,\dots ,x_n),$ having the period on of one the each variables, and expanding in the absolute convergent Fourier series (see, for example, [15], p. 447) of the form $$ f(x_1,\dots ,x_n)=\sum_{m_1=-\infty}^{\infty}\dots \sum_{m_n=-\infty}^{\infty}c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots +m_nx_n)}, $$ where $$ c(m_1,\dots ,m_n)=\int\limits_0^1\dots\int\limits_0^1f(x_1,\dots,x_n)e^{-2\pi i(m_1x_1+\dots +m_nx_n)}\;dx_1\dots dx_n. $$ Further, we select the number of lattice points $N$ in the form $N=N_1\dots N_n,$ where $(N_s,N_t)=1$ as $s\ne t, 1\leq s,t\leq n,$ and $N_s\asymp N^{1/n}, 1\leq n,$ and using the Chinesse theorem on remainders, we construct the interpolation polynomial of the form $$ P(x_1,\dots ,x_n)=\sum_{m_1=0}^{N_1-1}\dots\sum_{m_n=0}^{N_n-1}\tilde c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots m_nx_n)}, $$ where $$ c(m_1,\dots ,m_n)=\frac 1N\sum_{k_1=1}^{N_1}\dots \sum_{k_n=1}^{N_n}f\left(\frac{M_1^{*}k_1}{N_1},\dots ,\frac{M_n^{*}k_n}{N_n}\right)e^{-2\pi i\left(\frac{M_1^{*}m_1}{N_1}+\dots+\frac{M_n^{*}m_n}{N_n}\right)}, $$ moreover $N_sM_s=N, M_sM_s^{*}\equiv 1\pmod{N_s}.$
Keywords: the number-theoretic method in the numerical analysis, a lattice points, the V.S.Rjaben'kii method, rings of the integer rational and the integer algebraic numbers, the Chinesse theorem on remainders.
Mots-clés : the interpolation polynomial
@article{CHEB_2017_18_4_a19,
     author = {V. N. Chubarikov and M. L. Sharapova},
     title = {On interpolation of functions of several variables},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--347},
     year = {2017},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/}
}
TY  - JOUR
AU  - V. N. Chubarikov
AU  - M. L. Sharapova
TI  - On interpolation of functions of several variables
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 339
EP  - 347
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/
LA  - ru
ID  - CHEB_2017_18_4_a19
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%A M. L. Sharapova
%T On interpolation of functions of several variables
%J Čebyševskij sbornik
%D 2017
%P 339-347
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/
%G ru
%F CHEB_2017_18_4_a19
V. N. Chubarikov; M. L. Sharapova. On interpolation of functions of several variables. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 339-347. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/

[1] Vinogradov I. M., Method of trigonometric sums in Number Theory, 2-nd edition, Nauka, M., 1980, 144 pp.

[2] Krylov A. N., Lectures on numerical calculations, ch. III, Gostehizdat, M., 1950 (in Russian)

[3] Babenko K. I., Founndations of numerical analysis, Nauka, M., 1986, 744 pp. (in Russian)

[4] Bahvalov N. S., Gidkov N. P., Kobel'kov G. M., Numerical methods, Text-book, Nauka, M., 1987, 600 pp. (in Russian)

[5] Korobov N. M., Number theoretical methods in numerical analysis, MZNMO, 2004, 288 pp. (in Russian)

[6] Hua L.-K., Selected Papers, Springer Verlag, New York, 1983, 888 pp. | MR | Zbl

[7] Wang Y., Selected Papers, Bejing, 1999, 458 pp.

[8] Voronin S. M., Selected Papers, Publ. N.E. Bauman MGTU, M., 2006, 480 pp. (in Russian)

[9] Arkhipov G. I., Selected Papers, Publ. Orël State Univ., Orel, 2013, 464 pp. (in Russian)

[10] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric Sums in Number Theory and Analysis, De Gruyter expositions in mathematics, 39, Berlin–New York, 2004, 554 pp. | MR | Zbl

[11] Ryaben'kii V. S., “On tables and interpolation of functions from some class”, DAN SSSR, 131:5 (1960), 1025–1027 | Zbl

[12] Chubarikov V. N., “Arithmetical sums from polynomial values”, Doklady RAS, 466:2 (2016), 152–153 | DOI | Zbl

[13] Chubarikov V. N., Scharapova M. L., “On a cubature formulae for periodic functions”, Bull. Moscow Univ. Ser.I, Math, mech., 2017, no. 6, 59–62

[14] Chubarikov V. N., Scharapova M. L., “On analogue of Gaussian quadrature for periodic functions”, Bull. of Cybernetics, 28:2 (2017), 60–65 (in Russian)

[15] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on mathematical analysis, University text-book, 4-th edition, Drofa, M., 2004, 640 pp. (in Russian)