On interpolation of functions of several variables
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 339-347

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we constructed effective multivariate interpolation formulas for periodic functions, which are the precise on the Fourier polynomial classes. This paper continues investigations by N.M. Korobov [5], V.S. Rjaben'kii [11], S.M. Voronin [8], and others scientists on the application of the number-theoretic methods in numerical analysis. These authors was given the number of knots of a network equals to a prime number in the ring of integer rational numbers and in rings of integer numbers in algebraic numbers. Here we consider the class of strictly regular periodic functions $f(x_1,\dots ,x_n),$ having the period on of one the each variables, and expanding in the absolute convergent Fourier series (see, for example, [15], p. 447) of the form $$ f(x_1,\dots ,x_n)=\sum_{m_1=-\infty}^{\infty}\dots \sum_{m_n=-\infty}^{\infty}c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots +m_nx_n)}, $$ where $$ c(m_1,\dots ,m_n)=\int\limits_0^1\dots\int\limits_0^1f(x_1,\dots,x_n)e^{-2\pi i(m_1x_1+\dots +m_nx_n)}\;dx_1\dots dx_n. $$ Further, we select the number of lattice points $N$ in the form $N=N_1\dots N_n,$ where $(N_s,N_t)=1$ as $s\ne t, 1\leq s,t\leq n,$ and $N_s\asymp N^{1/n}, 1\leq n,$ and using the Chinesse theorem on remainders, we construct the interpolation polynomial of the form $$ P(x_1,\dots ,x_n)=\sum_{m_1=0}^{N_1-1}\dots\sum_{m_n=0}^{N_n-1}\tilde c(m_1,\dots ,m_n)e^{2\pi i(m_1x_1+\dots m_nx_n)}, $$ where $$ c(m_1,\dots ,m_n)=\frac 1N\sum_{k_1=1}^{N_1}\dots \sum_{k_n=1}^{N_n}f\left(\frac{M_1^{*}k_1}{N_1},\dots ,\frac{M_n^{*}k_n}{N_n}\right)e^{-2\pi i\left(\frac{M_1^{*}m_1}{N_1}+\dots+\frac{M_n^{*}m_n}{N_n}\right)}, $$ moreover $N_sM_s=N, M_sM_s^{*}\equiv 1\pmod{N_s}.$
Keywords: the number-theoretic method in the numerical analysis, a lattice points, the V.S.Rjaben'kii method, the interpolation polynomial, rings of the integer rational and the integer algebraic numbers, the Chinesse theorem on remainders.
@article{CHEB_2017_18_4_a19,
     author = {V. N. Chubarikov and M. L. Sharapova},
     title = {On interpolation of functions of several variables},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {339--347},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/}
}
TY  - JOUR
AU  - V. N. Chubarikov
AU  - M. L. Sharapova
TI  - On interpolation of functions of several variables
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 339
EP  - 347
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/
LA  - ru
ID  - CHEB_2017_18_4_a19
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%A M. L. Sharapova
%T On interpolation of functions of several variables
%J Čebyševskij sbornik
%D 2017
%P 339-347
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/
%G ru
%F CHEB_2017_18_4_a19
V. N. Chubarikov; M. L. Sharapova. On interpolation of functions of several variables. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 339-347. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a19/