Application of plasticity theory of dilating media to sealing processes of powders of metallic systems
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 269-285
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors carried out the basic parameters calculation of compacting powders of metallic systems (metals, steels, non-ferrous alloys of different alloying systems) during plastic compression deformation. The paper considers variants of calculating the pressures and densities distribution in powder compacts of various cross sections in different coordinate systems. The authors found that the highest density of the rectangular cross-section powder compact after pressing is observed near a die wall under the pressing punch, at the middle of the short side of the rectangle the density is higher than in the middle of the long side; the lowest density is observed at the die wall above the fixed punch, and in the middle of the short side of the rectangle the density is lower than in the middle of the long side; the lowest density under the pressing punch and the highest density over the fixed punch are observed at the centers of the corresponding rectangular sections. It is shown that in elliptical section compacts of the powders of metal systems after pressing at positive value $\zeta $ ($\zeta >0$) the pressure and density at the ends of the ellipse major axis are higher than at the ends of the minor axis and, conversely, when the $\zeta 0$ pressure and density at the ends of the major axis are less than at the ends of the minor axis. The obtained results can be used to develop low-waste and resource-saving processes and technologies for processing industrial materials under various conditions and states.
Keywords:
powder material, sealing, pressing, plastic deformation, cross-section, pressure, density.
@article{CHEB_2017_18_4_a14,
author = {E. S. Makarov and A. E. Gvozdev and G. M. Zhuravlev and A. N. Sergeev and I. V. Minaev and A. D. Breki and D. V. Malii},
title = {Application of plasticity theory of dilating media to sealing processes of powders of metallic systems},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {269--285},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a14/}
}
TY - JOUR AU - E. S. Makarov AU - A. E. Gvozdev AU - G. M. Zhuravlev AU - A. N. Sergeev AU - I. V. Minaev AU - A. D. Breki AU - D. V. Malii TI - Application of plasticity theory of dilating media to sealing processes of powders of metallic systems JO - Čebyševskij sbornik PY - 2017 SP - 269 EP - 285 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a14/ LA - ru ID - CHEB_2017_18_4_a14 ER -
%0 Journal Article %A E. S. Makarov %A A. E. Gvozdev %A G. M. Zhuravlev %A A. N. Sergeev %A I. V. Minaev %A A. D. Breki %A D. V. Malii %T Application of plasticity theory of dilating media to sealing processes of powders of metallic systems %J Čebyševskij sbornik %D 2017 %P 269-285 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a14/ %G ru %F CHEB_2017_18_4_a14
E. S. Makarov; A. E. Gvozdev; G. M. Zhuravlev; A. N. Sergeev; I. V. Minaev; A. D. Breki; D. V. Malii. Application of plasticity theory of dilating media to sealing processes of powders of metallic systems. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 269-285. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a14/