Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_4_a13, author = {Yu. V. Kuznetsov and Yu. N. Shteinikov}, title = {On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and $S$-units}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {261--268}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a13/} }
TY - JOUR AU - Yu. V. Kuznetsov AU - Yu. N. Shteinikov TI - On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and $S$-units JO - Čebyševskij sbornik PY - 2017 SP - 261 EP - 268 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a13/ LA - ru ID - CHEB_2017_18_4_a13 ER -
%0 Journal Article %A Yu. V. Kuznetsov %A Yu. N. Shteinikov %T On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and $S$-units %J Čebyševskij sbornik %D 2017 %P 261-268 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a13/ %G ru %F CHEB_2017_18_4_a13
Yu. V. Kuznetsov; Yu. N. Shteinikov. On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and $S$-units. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 261-268. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a13/
[1] Platonov V. P., Petrunin M. M., “Fundamental $S$-units in hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves”, Dokl. Math., 92:3 (2015), 667–669 | DOI | MR | Zbl
[2] Platonov V. P., Petrunin M. M., “S-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR | Zbl
[3] Platonov V. P., Petrunin M. M., “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | DOI | MR | Zbl
[4] Platonov V. P., Petrunin M. M., “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | MR | Zbl
[5] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR | Zbl
[6] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl
[7] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl
[8] Schmidt W. M., “On continued fractions and diophantine approximation in power series fields”, Acta Arithm., 95:2 (2000), 139–166 | DOI | MR | Zbl
[9] Benyash-Krivets V. V., Platonov V. P., “S-units in hyperelliptic fields”, Russian Math. Surveys, 62:4 (2007), 784–786 | DOI | DOI | MR | Zbl
[10] Benyash-Krivets V. V., Platonov V. P., “Groups of $S$-units in hyperelliptic fields”, Dokl. Math., 417:4 (2007), 446–450 | Zbl
[11] Benyash-Krivets V. V., Platonov V. P., “Continued fractions and S-units in hyperelliptic fields”, Russian Math. Surveys, 63:2 (2008), 357–359 | DOI | DOI | MR | Zbl
[12] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | MR | Zbl
[13] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 475:2 (2017), 133–136 | DOI | Zbl
[14] Adams W. W., Razar M. J., “Multiples of point on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl
[15] Leprevost F. Points rationnels de torsion de jacobiennes de certaines courbes de genre 2, C.R. Acad. Sci. Paris, 316:8 (1993), 819–821 | MR | Zbl