Estimates of polynomials in a liouvillean polyadic integer
Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 256-260
Voir la notice de l'article provenant de la source Math-Net.Ru
Let
$$
\alpha=\sum\limits_{n=0}^\infty a_kn_k!, \quad a_k\in\mathbb{Z}, \quad 0\leqslant a_k\leqslant n_k,
$$
with a rapidly growing sequence $n_k$ of positive integers. This series converges in all $p$-adic fields $\mathbb{Q}_p$ so it is a polyadic number.
The ring of polyadic integers is a direct product of the rings $\mathbb{Z}_p$ of $p$-adic integers over all prime numbers $p$.
So $\alpha$ can be considered as the vector $\left(\alpha^{(1)}, \ldots, \alpha^{(n)}, \ldots\right)$ with coordinates equal to the sums $\alpha^{(n)}$ of the series $\alpha$ in the field $\mathbb{Q}_{p_n}$ for the $n$-th prime $p_n$.
For any nonzero polynomial $P(x)$ with integer coefficients one has
$$
P(\alpha)=\left(P\left(\alpha^{(1)}\right), \ldots, P\left(\alpha^{(n)}\right), \ldots \right).
$$ The polyadic integer $\alpha$ is called transcendental, if for any nonzero polynomial $P(x)$ with rational integer coefficients there exist a prime $p^{(n)}$ with $P\left(\alpha^{(n)}\right)\neq 0$ in $p_n$.
The polyadic integer is infinitely transcendental if there exist infinitely many primes $p_n$ such that $P\left(\alpha^{(n)}\right)\neq 0$ in $\mathbb{Q}_{p_n}$ and it is called globally transcendental, if $P\left(\alpha^{(n)}\right)\neq 0$ for any $n$.
The paper presents estimates from below of $\left|P\left(\alpha^{(n)}\right)\right|_{p_n}$ in any $\mathbb{Q}_{p_n}$. As a corollary we get the global transcendence of $\alpha$.
Keywords:
polyadic integer, estimates of polynomials.
@article{CHEB_2017_18_4_a12,
author = {E. S. Krupitsyn},
title = {Estimates of polynomials in a liouvillean polyadic integer},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {256--260},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a12/}
}
E. S. Krupitsyn. Estimates of polynomials in a liouvillean polyadic integer. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 256-260. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a12/