Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_4_a11, author = {O. Kh. Karimov}, title = {Coercive estimate and separation theorem for one nonlinear differential operator in a {Hilbert} space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {246--255}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a11/} }
TY - JOUR AU - O. Kh. Karimov TI - Coercive estimate and separation theorem for one nonlinear differential operator in a Hilbert space JO - Čebyševskij sbornik PY - 2017 SP - 246 EP - 255 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a11/ LA - ru ID - CHEB_2017_18_4_a11 ER -
O. Kh. Karimov. Coercive estimate and separation theorem for one nonlinear differential operator in a Hilbert space. Čebyševskij sbornik, Tome 18 (2017) no. 4, pp. 246-255. http://geodesic.mathdoc.fr/item/CHEB_2017_18_4_a11/
[1] Everitt W. N., Gierz M., “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 23 (1971), 301–324 | DOI | MR | Zbl
[2] Everitt W. N., Gierz M., “On some properties of the powers of a family self-adjoint differential expressions”, Proc. London Math. Soc., 24 (1972), 149–170 | DOI | MR | Zbl
[3] Everitt W. N., Gierz M., “Some inequallities associated with certain differential operarors”, Math. Z., 26 (1972), 308–326 | DOI | MR
[4] Everitt W. N., Gierz M., “Inequalities and separation for Schrodinger - type operators in $L_2(R^n)$”, Proc. Roy. Soc. Edinburg Sect A, 79 (1977), 149–170 | MR
[5] Boimatov K. Kh., “Theorems of separability”, Doklady Akad. Nauk SSSR, 213:5 (1973), 1009–1011 | Zbl
[6] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. of the Math. Inst. of the USSR Academy of Sciences im. Steklova, 170, 1984, 37–76 | Zbl
[7] Boimatov K. Kh., Saripov A., “Coercive properties of nonlinear Schrodinger and Dirac operators”, Reports of the Russian Academy of Sciences, 326:3 (1992), 393–398 | Zbl
[8] Boimatov K. Kh., “Coercive estimates and separability theorems for differential operators of the second order”, Mathematical notes, 46:6 (1989), 110–112
[9] Otelbaev M., “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Proc.of the Math. Inst. of the USSR Academy of Sciences im. Steklova, 161, 1983, 195–217 | Zbl
[10] Muratbekov M. B., Otelbaev M., “Smoothness and approximation properties of solutions of a class of nonlinear equations of Schrodinger”, Proc.of the univer. of math., 1989, no. 3, 44–48
[11] Muratbekov M. B., Muratbekov M. M., Ospanov K. N., “Coercive solvability of odd-order differential equations and its applications”, Dokl. Mathematics, 435:3 (2010), 310–313 | Zbl
[12] Salem Omram, Khaled A. Gepreel, “eparation of the Helmholtz Partial Differential Eduation in Hilbert Space”, Adv. Studies Theor. Phys., 6:9 (2012), 399–410 | MR
[13] Zayed E. M. E., “Separation for the biharmonic differential operator in the Hilbert space associated with existence and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl
[14] Zayed E. M. E., Salem Omram, “Separation for triple-harmonic differential operator in the Hilbert”, International J. Math. Combin., 4 (2010), 13–23 | Zbl
[15] Zayed E. M. E., A.S. Mohamed, H.A. Atia, “Inequalities and separation for the Laplace-Beltrami differential operator in Hilbert spaces”, J. Math. Anal. Appl., 336 (2007), 81–92 | DOI | MR | Zbl
[16] Karimov O. Kh., “Coercive properties and separability biharmonic operator with matrix potential”, Proceedings of the International Conference on function spaces and approximation theory dedicated to the 110th birth anniversary of the of Academician C. M. Nikol'skii, Math. Inst. of the USSR Academy of Sciences, 2015, 153–154 | Zbl
[17] Karimov O. Kh., “On separation of second order nonlinear differential operators with matrix coefficients”, News of the Academy of Sciences of the Republic of Talikistan. Department of physical, mathematical, chemical, geological and technical sciences, 157:3 (2014), 42–50
[18] Karimov O. Kh., “On separation of nonlinear second order nonlinear differential operators with matrix coefficients in a weighted space”, Reports of the Academy of Sciences of the Republic of Talikistan, 58:8 (2015), 665–673
[19] Karimov O. Kh., “Coercive properties and separability biharmonic operator with matrix potential”, Ufa mathematical journal, 9:1 (2017), 54–61 | DOI | MR | Zbl