Non-stationary thermo-diffusion processes in finite one-dimensional crystal
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 332-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic one-dimensional harmonic crystal subjected to an instantaneous spatially uniform thermal perturbation is considered. Fast transitional and long evolutionary processes are observed. Time dependance of thermal and diffusion characteristics is analyzed. Influence of the crystal finite size on the transitional and evolutionary processes is considered. The principal difference in long time behavior for statistical averages for squares of velocities and squares of displacements is demonstrated.
Keywords: Harmonic crystal, nonequilibrium thermodynamics, temperature, diffusion.
@article{CHEB_2017_18_3_a19,
     author = {A. M. Krivtsov and A. S. Murachev and D. V. Tsvetkov},
     title = {Non-stationary thermo-diffusion  processes in finite one-dimensional  crystal},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {332--351},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a19/}
}
TY  - JOUR
AU  - A. M. Krivtsov
AU  - A. S. Murachev
AU  - D. V. Tsvetkov
TI  - Non-stationary thermo-diffusion  processes in finite one-dimensional  crystal
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 332
EP  - 351
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a19/
LA  - ru
ID  - CHEB_2017_18_3_a19
ER  - 
%0 Journal Article
%A A. M. Krivtsov
%A A. S. Murachev
%A D. V. Tsvetkov
%T Non-stationary thermo-diffusion  processes in finite one-dimensional  crystal
%J Čebyševskij sbornik
%D 2017
%P 332-351
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a19/
%G ru
%F CHEB_2017_18_3_a19
A. M. Krivtsov; A. S. Murachev; D. V. Tsvetkov. Non-stationary thermo-diffusion  processes in finite one-dimensional  crystal. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 332-351. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a19/

[1] Rieder Z., Lebowitz J. L., Lieb E., “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8 (1967), 1073–1078 | DOI

[2] Dhar A., “Heat Transport in low-dimensional systems”, Advanced in Physics, 57:5 (2008), 457–537 | DOI

[3] Krivtsov A. M., “Energy Oscillations in a One-Dimensional Crystal”, Doklady Physics, 59:9 (2014), 427–430 | DOI | DOI | MR

[4] Krivtsov A. M., “Heat transfer in infinite harmonic one dimensional crystals”, Doklady Physics, 60:9 (2015), 407–411 | DOI | DOI | MR

[5] S. Lepri (ed.), Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture notes in physics, 921, Springer International Publishing, Switzerland, 2016, 418 pp. | DOI | MR

[6] Kuzkin V. A., Krivtsov A. M., Unsteady heat transfer in harmonic scalar lattices, 2017, arXiv: 1702.08686

[7] Poletkin K. V., Gurzadyan G. G., Shang J., Kulish V., “Ultrafast heat transfer on nanoscale in thin gold films”, Applied Physics B, 107:01 (2012), 137–143 | DOI

[8] Cartlidge E., “European xfel to shine as brightest, fastest x-ray source”, Science, 354:6308 (2016), 22–23 | DOI

[9] Albertazzi B., Ozaki N., Zhakhovsky V. et al., “Dynamic fracture of tantalum under extreme tensile stress”, Science Advances, 3:6 (2017) | DOI

[10] Krivtsov A. M., Morozov N. F., “On Mechanical Characteristics of Nanocrystals”, Physics of the Solid State, 44:12 (2002), 2260–2265 | DOI

[11] Goldstein R. V., Morozov N. F., “Mechanics of deformation and fracture of nanomaterials and nanotechnology”, Physical Mesomechanics, 10 (2007), 5–6 | DOI | Zbl

[12] Levin V. A., Levitas V. I., Lokhin V. V., Zingerman K. M., Sayakhova L. F., Freiman E. I., “Solid-state stress-induced phase transitions in a material with nanodimensional inhomogeneities: Model and computational experiment”, Doklady Physics, 55:10 (2010), 507–511 | DOI

[13] Indeitsev D. A., Loboda O. S., Morozov N. F., Skubov D. Yu., Shtukin L. V., “Self-oscillating mode of a nanoresonator”, Physical Mesomechanics, 19:5 (2016), 23–28

[14] Florencio J., Lee M. H., “Exact time evolution of a classical harmonic-oscillator chain”, Phys. Rev. A, 31 (1985), 3231 | DOI | MR

[15] Krivtsov A. M., Deformation and fracture of solids with microstructur, Fizmatlit, M., 2007, 304 pp. (In Russian)

[16] Gendelman O. V., Savin A. V., “Normal heat conductivity in chains capable of dissociation”, Europhys. Lett., 106 (2014), 34004 | DOI

[17] Savin A. V., Kosevich Y. A., “Thermal conductivity of molecular chains with asymmetric potentials of pair interactions”, Phys. Rev. E, 89 (2014), 032102 | DOI

[18] Berinskii I. E., Slepyan L. I., How a dissimilar-chain system is splitting. Quasi-static, subsonic and supersonic regimes, 2017, arXiv: 1704.00046v2 | MR

[19] Ashcroft N. W., Mermin N. D., Solid State Physics, Holt, Rinehart and Winston, 1976, 847 pp.

[20] Krivtsov A. M., On unsteady heat conduction in a harmonic crystal, 2015, arXiv: 1509.02506

[21] Krivtsov A. M., “Dynamics of thermal processes in one-dimensional harmonic crystals”, Questions of mathematical physics and applied mathematics, Proceedings of the seminar timed to the 75th anniversary of prof. E.A. Tropp (30 September 2015), A.F. Ioffe Physico-Technical Institute, SPb., 2016, 63–81

[22] Yanke E., Emde F., Lesh F., Special functions: the formulas, graphs, tables, Science, M., 1964, 344 pp.

[23] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover, New York, 1979, 1046 pp. | MR