Numerical estimation of effective elastic properties of elastomer composites under finite strains using spectral element method with CAE Fidesys
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 318-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimation of effective properties of composite materials is one of the main problems for the composite mechanics. In this article, a method is developed by which the effective nonlinear elastic properties of elastomer composites (filled rubbers) are estimated under finite strains. The method is based on numerical solution of nonlinear elastic boundary-value problems for a representative volume element (RVE) of elastomer composite. Different boundary conditions are consequently applied to the RVE: nonperiodic (displacements of the RVE boundary) or periodic (restraints on displacements of corresponding points of opposite faces of RVE). An obtained stress field is averaged by volume after the solution of an elastic boundary-value problem. Effective properties are estimated as a quadratic dependence of the second Piola-Kirchhoff stress tensor upon the Green strain tensor. This article presents the results of numerical estimation of effective elastic properties of filled rubbers under finite strains. Numerical calculations were performed with the help of Fidesys Composite program module, which is a part of the domestic Fidesys CAE-system, using the finite element method and the spectral element method. Spectral element method is one of the most effective and modern finite element method version. High order piecewice-polynomial functions are reference functions in SEM. There is no need to rebuild or refine mesh to check solution mesh convergence, as mesh is kept in initial state and only element orders are changed. The subject of investigation was the filled elastomer effective properties dependence upon the filler particles special orientation and the filling degree. Graphs of these dependencies are given in the article. The obtained results show that the spectral element method is suitable for numerical solution of the effective properties estimation problem for composite materials. In addition, the results allow to estimate the influence of non-linear effects upon the mechanical properties of the composite. The correction for stress from taking the non-linearity into account is about 25% under the strain 15% in the case of uniaxial tension.
Keywords: solid mechanics, composite mechanics, effective properties, finite strains, elastomer composites, spectral element method.
@article{CHEB_2017_18_3_a18,
     author = {D. A. Konovalov and M. Ya. Yakovlev},
     title = {Numerical estimation of effective  elastic properties of elastomer  composites under finite strains  using spectral element method  with {CAE} {Fidesys}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {318--331},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a18/}
}
TY  - JOUR
AU  - D. A. Konovalov
AU  - M. Ya. Yakovlev
TI  - Numerical estimation of effective  elastic properties of elastomer  composites under finite strains  using spectral element method  with CAE Fidesys
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 318
EP  - 331
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a18/
LA  - ru
ID  - CHEB_2017_18_3_a18
ER  - 
%0 Journal Article
%A D. A. Konovalov
%A M. Ya. Yakovlev
%T Numerical estimation of effective  elastic properties of elastomer  composites under finite strains  using spectral element method  with CAE Fidesys
%J Čebyševskij sbornik
%D 2017
%P 318-331
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a18/
%G ru
%F CHEB_2017_18_3_a18
D. A. Konovalov; M. Ya. Yakovlev. Numerical estimation of effective  elastic properties of elastomer  composites under finite strains  using spectral element method  with CAE Fidesys. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 318-331. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a18/

[1] Gamlitskiy U. A., Levin V. A., Filippenko E. V., Yakovlev M. Y., “On the problem of an elastomeric nanocomposite unit cell stress field calculation”, Rubber, 2010, no. 4, 22–25

[2] Levin V. A., Nonlinear computational mechanics of strength, In 5 volumes, v. I, Models and methods. Defect inception and growth, ed. V. A. Levin, Fizmatlit, M., 2015, 456 pp.

[3] Levin V. A., Zingerman K. M., Nonlinear computational mechanics of strength, In 5 volumes, v. III, Exact and approximate analytical solutions for finite deformations and their imposition, ed. Levin V. A., Fizmatlit, M., 2016, 400 pp.

[4] Lurie A. I., Nonlinear theory of elasticity, Science, M., 1980, 512 pp.

[5] Yakovlev M. Y., “On the numerical estimation of effective mechanical characteristics of rubber-cord composites”, Bulletin of Tver State University. Series: Applied Mathematics, 2012, no. 17, 29–40

[6] Yakovlev M. Y., Yangirova A. V., “Method and results of a numerical evaluation of the effective mechanical properties of rubber-cord composites for the case of a two-layer material”, Deng Engineering Digest, 2013, no. 2

[7] Bronstein J. N., Semendjajew K. A., Musiol G., Muchkig H., Taschenbuch der Mathematik, 4 Auflage, Harri Deutch, Frankfurt a. M., 1999 | MR | Zbl

[8] Hesthaven J. S., Teng C. H., “Stable Spectral Methods on Tetrahedral Elements”, SIAM Journal of Scientific Computing, 21:6 (1998), 2352–2380 | DOI | MR

[9] Komatitsch D., Violette J.-P., “The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures”, Bulletin of Seismological Society of America, 88:2 (1998)

[10] Levin V. A., Lokhin V. V., Zingerman K. M., “Effective elastic properties of porous materials with randomly dispersed pores. Finite deformation”, Trans. ASME. Journal of Applied Mechanics, 67:4 (2000), 667–670 | DOI | Zbl

[11] Levin V. A., Vdovichenko I. I., Vershinin A. V., Yakovlev M. Ya., Zingerman K. M., “Numerical estimation of effective mechanical properties for reinforced Plexiglas in the two-dimensional case”, Model. Simulat. Eng., 2016 http://www.hindawi.com/journals/mse/aip/9010576/

[12] Levin V. A., Zingermann K. M., “Effective Constitutive Equations for Porous Elastic Materials at Finite Strains and Superimposed Finite Strains”, Trans. ASME. Journal of Applied Mechanics, 70:6 (2003), 809–816 | DOI | Zbl

[13] Levin V. A., Zingerman K. M., Vershinin A. V., Yakovlev M. Ya., “Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains”, Compos. Struct., 131 (2015), 25–36 | DOI

[14] Vdovichenko I. I., Yakovlev M. Ya., Vershinin A. V., Levin V. A., “Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems”, IOP Conference Series: Materials Science and Engineering, 158:1 (2016), 012094 | DOI

[15] Vershinin A. V., Levin V. A., Zingerman K. M., Sboychakov A. M., Yakovlev M. Ya., “Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for”, Adv. Eng. Softw., 86 (2015), 80–84 | DOI

[16] Zhang L., Cui T., Liu H., “A set of symmetric quadrature rules on triangle and tetrahedral”, Journal of Computational Mathematics, 27:1 (2009), 89–96 | MR | Zbl

[17] Zienkiewicz O. C., Taylor R. L., The finite element method, v. 1, The basis, Butterworth-Heinemann, Oxford, United Kingdom, 2000, 707 pp. | MR | Zbl

[18] Zienkiewicz O. C., Taylor R. L., The finite element method, v. 2, Solid mechanics, Butterworth-Heinemann, Oxford, United Kingdom, 2000, 479 pp. | MR | Zbl

[19] Fidesys LLC official web-site, http://cae-fidesys.com/en