Reduced order multiscale analysis of moisture degradation in composite materials
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 280-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are variety of factors affecting degradation of composite materials due to environmental effects. In the present manuscript, two sources of degradation are studied. We first consider an accumulation of damage in carbon-fiber/epoxy-resin material system subjected to cyclic load. A multiscale-multiphysics approach is developed for degradation of glass-fiber/Nylon material system due to moisture accumulation. A multiphysics-multiscale approach couples diffusion-reaction-mechanical process at multiple spatial scales.
Keywords: composite materials, multi-scale multi-physical approach, degradation of composite materials.
@article{CHEB_2017_18_3_a15,
     author = {Zifeng Yuan and Jacob Fish},
     title = {Reduced order multiscale analysis of moisture degradation in composite materials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {280--291},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a15/}
}
TY  - JOUR
AU  - Zifeng Yuan
AU  - Jacob Fish
TI  - Reduced order multiscale analysis of moisture degradation in composite materials
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 280
EP  - 291
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a15/
LA  - en
ID  - CHEB_2017_18_3_a15
ER  - 
%0 Journal Article
%A Zifeng Yuan
%A Jacob Fish
%T Reduced order multiscale analysis of moisture degradation in composite materials
%J Čebyševskij sbornik
%D 2017
%P 280-291
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a15/
%G en
%F CHEB_2017_18_3_a15
Zifeng Yuan; Jacob Fish. Reduced order multiscale analysis of moisture degradation in composite materials. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 280-291. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a15/

[1] B. Gerard, G. Pijaudier-Cabot, C. Laborderie, “Coupled diffusion-damage modelling and the implications on failure due to strain localisation”, International Journal of Solids and Structures, 35:31–32 (1998), 4107–4120 | DOI | Zbl

[2] Gerard B., Le Bellego C., Bernanrd O., “Simplified modelling of calcium leaching of concrete in various environment”, Materials and Structures, 35 (2002), 632–640 | DOI | MR

[3] Ulm F.J., Lemarchand E., Heukamp F. H., “Elements of chemomechanics of calcium leaching of cement-based materials at different scales”, Engineering Fracture Mechanics, 70 (2003), 871–889 | DOI

[4] Terada K., Kurumatani M., “Two-scale diffusion–deformation coupling model for material deterioration involving micro-crack propagation”, International Journal for Numerical Methods in Engineering, 83:4 (2010), 426–451 | MR | Zbl

[5] Q. Yu, J. Fish, “Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem”, International journal of solids and structures, 39:26 (2002), 6429–6452 | DOI | MR | Zbl

[6] Kuznetsov S., Fish J., “Mathematical homogenization theory for electroactive continuum”, International Journal for Numerical Methods in Engineering, 91:11 (2012), 1199–1226 | DOI | MR

[7] D. Klepach, T. I. Zohdi, “Modeling and simulation of deformation-dependent diffusion in composite media”, Composites Part B: Engineering, 56 (2014), 413–423 | DOI

[8] T.I. Zohdi, P. Wriggers, Introduction to computational micromechanics, Second Reprinting, Springer-Verlag, 2008 | MR | Zbl

[9] T.I. Zohdi, “An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids”, The International Journal of Numerical Methods in Engineering, 53 (2002), 1511–1532 | DOI | MR | Zbl

[10] T.I. Zohdi, “Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids”, Computer Methods in Applied Mechanics and Engineering, 193:6–8 (2004), 679–699 | DOI | Zbl

[11] M. Bailakanavar, J. Fish, V. Aitharaju, W. Rodgers, “Coupling of moisture diffusion and mechanical deformation in polymer matrix composites”, International Journal for Numerical Methods in Engineering, 98:12 (2014), 859–880 | DOI | MR | Zbl

[12] R.J. Atkin, R. E. Craine, “Continuum theories of mixtures: basic theory and historical development”, Q.J. Mechanics Appl. Math., 29:2 (1976), 209–244 | DOI | MR | Zbl

[13] R.M. Bowen, “Theory of mixture”, Continuum Physics III, 1976, 1–127

[14] R. Dunwoody, “A thermomechanical theory of diffusion in solid-fluid mixtures”, Arch. Ration. Mech. Anal., 38 (1970), 348–371 | DOI | MR | Zbl

[15] K. Hutter, K. Jöhnk, Continuum Methods of Physical Modeling, Springer, Berlin, 2004 | MR | Zbl

[16] S. Lustig, J. Caruthers, N. Peppas, “Continuum thermodynamics and transport theory for polymer-fluid mixtures”, Chem. Eng. Sci., 47 (1992), 3037–3057 | DOI

[17] I. Müller, “A thermodynamic theory of mixtures of fluids”, Arch. Ration. Mech. Anal., 28 (1968), 1–39 | DOI | MR | Zbl

[18] N. Quang, I. Samohýl, H. Thoang, “Irreversible (rational) thermodynamics of mixtures of a solid substance with chemical reacting fluids”, Collect. Czech. Chem. Commun., 53 (1988), 1620–1635 | DOI

[19] I. Samohýl, X. N. M. Šípek, “Irreversible (rational) thermodynamics of fluid-solid mixtures”, Collect. Czech. Chem. Commun., 50 (1985), 2346–2363 | DOI

[20] C. Truesdell, “Mechanical basis of diffusion”, J. Chem. Phys., 37 (1962), 2336–2344 | DOI

[21] V. Aitharaju, W. Rodgers, Internal General Motors Report, 2010

[22] H. K. Reimschuessel, “Relationships on the effect of water on glass transition temperature and young's modulus of nylon 6”, J. Polym. Sci. Polym. Chem. Ed., 16:6, Jun. (1978), 1229–1236 | DOI

[23] J. Fish, Practical Multiscaling, Wiley, 2013

[24] Z. Yuan, J. Fish, “Hierarchical model reduction at multiple scales. Hierarchical Model Reduction at Multiple Scales”, International Journal for Numerical Methods in Engineering, 79:3 (2009), 314–339 | DOI | MR | Zbl