Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_3_a14, author = {K. M. Zingerman and L. M. Zubov}, title = {Exact solutions of problems of the theory of repeated superposition of large strains for bodies created by successive junction of strained parts}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {255--279}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a14/} }
TY - JOUR AU - K. M. Zingerman AU - L. M. Zubov TI - Exact solutions of problems of the theory of repeated superposition of large strains for bodies created by successive junction of strained parts JO - Čebyševskij sbornik PY - 2017 SP - 255 EP - 279 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a14/ LA - ru ID - CHEB_2017_18_3_a14 ER -
%0 Journal Article %A K. M. Zingerman %A L. M. Zubov %T Exact solutions of problems of the theory of repeated superposition of large strains for bodies created by successive junction of strained parts %J Čebyševskij sbornik %D 2017 %P 255-279 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a14/ %G ru %F CHEB_2017_18_3_a14
K. M. Zingerman; L. M. Zubov. Exact solutions of problems of the theory of repeated superposition of large strains for bodies created by successive junction of strained parts. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 255-279. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a14/
[1] Levin V. A., “Theory of repeated superposition of large deformations. Elastic and viscoelastic bodies”, International Journal of Solids and Structures, 35 (1998), 2585–2600 | DOI | Zbl
[2] Levin V. A., Repeated superposition of large deformationsin elastic and viscoelastic bodies, Fizmatlit, M., 1999
[3] Levin V. A., Zingerman K. M., Plane problems of repeated superposition of large strains. Methods of solution, Fizmatlit, M., 2002
[4] V.A. Levin, K.M. Zingerman, A.V. Vershinin, E.I. Freiman, A.V. Yangirova, “Numerical analysis of the stress concentration near holes originating in previously loaded viscoelastic bodies at finite strains”, International Journal of Solids and Structures, 50:20–21 (2013), 3119–3135 | DOI
[5] Levin V. A., Vershinin A. V., “Non-stationary plane problem of the successive origination of stress concentrators in a loaded body. Finite deformations and their superposition”, Communications in Numerical Methods in Engineering, 24 (2008), 2229–2239 | DOI | Zbl
[6] Lurie A. I., Nonlinear theory of elasticity, Nauka, M., 1980
[7] Truesdell C., A First Cource in Rational Continuum Mechanics, The Johns Hopkins University, Baltimore, Maryland, 1972
[8] Rivlin R. S., “Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear, and flexure”, Philos. Trans. Roy. Soc. London, A252 (1949), 173–195 | DOI | MR | Zbl
[9] Bartenev G. M., Khazanovich T. N., “The law of high-elastic strains of mesh polymers”, Vysokomolekulyarnye soedineniya, 2:1 (1960), 20–28
[10] Gadolin A. V., “Theory of cannons fastened by bands”, Artilleriyskiy zhurnal, 1861, no. 12
[11] Sedov L. I., Mechanics of Continuous Medium, v. 2, Nauka, M., 1994
[12] Levin V. A., Zubov L. M., Zingerman K. M., “Torsion of a composite nonlinear elastic cylinder with a prestressed inclusion”, Doklady Physics, 58:12 (2013), 540–543 | DOI | DOI | MR
[13] Levin V. A., Zubov L. M., Zingerman K. M., “The torsion of a composite, nonlinear-elastic cylinder with an inclusion having initial large strains”, Int. J. Solids a. Struct., 51:6 (2014), 1403–1409 | DOI
[14] Levin V. A., Morozov E. M., Matvienko Yu. G., Selected Nonlinear Problems of Fracture Mechanics, ed. V.A. Levin, Fizmatlit, M., 2004
[15] Green A. E., Adkins J. E., Large Elastic Deformations and Non-linear Continuum Mechanics, Clarendon Press, Oxford, 1960 | MR | Zbl
[16] Rivlin R. S., “Large elastic deformations of isotropic materials”, Philos. Trans. Roy. Soc. London, A240 (1948), 459–508 | DOI | MR | Zbl
[17] Moony M. A., “Theory of large elastic deformation”, Journal of Applied Physics, 1940, no. 11, 582–592 | DOI
[18] Poynting J. H., “On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted”, Proc. R. Soc. Lond. A, 82 (1909), 546–559 | DOI | Zbl
[19] Zubov L. M., “Direct and inverse Poynting effects in elastic cylinders”, Doklady Physics, 46 (2001), 675–677 | DOI | MR | Zbl
[20] Mihai L. A., Goriely A., “Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials”, Proc. R. Soc. A, 467 (2011), 3633–3646 | DOI | MR | Zbl
[21] Moon H., Truesdell C., “Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid”, Arch. Ration. Mech. Anal., 55 (1974), 1–17 | DOI | MR | Zbl
[22] Zelenina A. A., Zubov L. M., “The non-linear theory of the pure bending of prismatic elastic solids”, J. Appl. Math. Mech., 64 (2000), 399–406 | DOI | MR | Zbl
[23] Levin V. A., Zubov L. M., Zingerman K. M., “Exact solution of the nonlinear bending problem for a composite beam containing a prestressed layer at large strains”, Doklady Physics, 60:1 (2015), 24–27 | DOI | DOI
[24] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, Int. J. Solids a. Struct., 67–68 (2015), 244–249 | DOI | MR
[25] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains. Part 2. Solution for different types of incompressible materials”, International Journal of Solids and Structures, 100–101 (2016), 558–565 | DOI