Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_3_a13, author = {F. V. Grigoriev and I. V. Kapyrin and Yu. V. Vassilevski}, title = {Modeling of thermal convection in porous media with volumetric heat source using the {GeRa} code}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {235--254}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/} }
TY - JOUR AU - F. V. Grigoriev AU - I. V. Kapyrin AU - Yu. V. Vassilevski TI - Modeling of thermal convection in porous media with volumetric heat source using the GeRa code JO - Čebyševskij sbornik PY - 2017 SP - 235 EP - 254 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/ LA - ru ID - CHEB_2017_18_3_a13 ER -
%0 Journal Article %A F. V. Grigoriev %A I. V. Kapyrin %A Yu. V. Vassilevski %T Modeling of thermal convection in porous media with volumetric heat source using the GeRa code %J Čebyševskij sbornik %D 2017 %P 235-254 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/ %G ru %F CHEB_2017_18_3_a13
F. V. Grigoriev; I. V. Kapyrin; Yu. V. Vassilevski. Modeling of thermal convection in porous media with volumetric heat source using the GeRa code. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 235-254. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/
[1] Diersh H.-J. G., FEFLOW — Finite element modeling of flow, mass and heat transport in porous and fractured media, Springer, Berlin–Heidelberg, 2014, xxxv+996 pp. | MR
[2] Voss C. I., A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport, U.S. Geological Survey Water-Resources Investigations Report 84-4369, 1984, 409 pp.
[3] Voss C. I., Provost A. M., SUTRA, A Model for Saturated-Unsaturated Variable-Density Ground-Water Flow with Solute or Energy Transport, Geological Survey Water-Resources Investigations Report 02-4231, 2002, 250 pp.
[4] Weatherhill D., Simmons C. T., Voss C. E., Robinson N. I., “Testing density-dependent ground-water models: two-dimensional steady state unstable convection in infinite, finite and inclined porous layers”, Advances in Water Resources, 27 (2004), 547–562 | DOI
[5] Ranganathan V., Hanor J. S., “Basin density-driven groundwater flow near salt domes”, Chem. Geol., 74 (1988), 173–188 | DOI
[6] Langevin C. D., Thorne D. T. (Jr.), Dausman A. M., Sukop M. C., Guo Weixing, SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport, U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, 2007, 39 pp.
[7] Pruess K., Oldenburg C., Moridis G., TOUGH2 User's Guide, ver. 2.0, Lawrence Berkeley National Laboratory, 1999
[8] Kapyrin I. V., Ivanov V. A., Kopytov G. V., Utkin S. S., “Integral code GeRa for RAW disposal safety validation”, Gornyi zhurnal, 2015, no. 10, 44–50
[9] Vassilevski Y. V., Konshin I. N., Kopytov G. V., Terekhov K. M., INMOST — a Software Platform and Graphical Environment for Development of Parallel Numerical Models on General Meshes, Izdatelstvo Moskovskogo Universiteta, M., 2013 (Russian)
[10] INMOST project page
[11] Diersh H.-J. G., Kolditz O., “Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems”, Advances in Water resources, 21 (1998), 401–425 | DOI
[12] Kimel L. R., Mashkovich V. P., Protection against ionizing radiation, 2-nd ed., Atomizdat, M., 1972 (Russian)
[13] Nikitin K., Vassilevski Yu., “A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D”, Russian J. Numer. Anal. Math. Modelling, 25:4 (2010), 335–358 | DOI | MR | Zbl
[14] Haajizadeh M., Ozguc A. F., Tien C. L., “Natural convection in a vertical porous enclosure with internal heat generation”, Int. J. Heat Mass Transfer., 27:10 (1985), 1893–1902 | DOI
[15] Buretta R. J., Berman A. S., “Convective heat transfer in a liquid saturated porous layer”, ASME J. Appl. Mech., 43 (1976), 249–253 | DOI
[16] Hardee H. C., Nilson R. H., “Natural convection in porous media with heat generation”, Nucl. Sci. Engng., 63 (1977), 119–132 | DOI
[17] Rhee S. J., Dhir V. K., Catton I., “Natural convection heat transfer in beds of inductively heated particles”, ASME J. Heat Transfer, 100 (1978), 78–85 | DOI
[18] Kulacki F. A., Freeman R. G., “A note on thermal convection in a saturated, heat generating porous layer”, ASME J. Heat Transfer, 101 (1979), 169–171 | DOI
[19] Nield D. A., Bejan A., Convection in Porous Media, 5th edition, Springer, 2017 | MR | Zbl
[20] Okounkov G. A., Rybalchenko A. I., Kuvaev A. A., “Thermal behaviour of geologic environment used for nuclear waste disposal”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, 2003, no. 3, 237–244
[21] Kirjuhin A. V., Kuvaev A. A., “Modeling of the test case of high-level radioactive waste injection in aquifer with radiogenic heat”, “Groundwater geology today and tomorrow” international scientific conference proceedings, MSU, M., 2013, 204–209
[22] Rybalchenko A. I., Pimenov M. K., Kostin P. P. et al., Deep geological liquid radioactive waste disposal, IzdAt, M., 1994
[23] Mal'kovskii V. I., Pek A. A., Kochkin B. T., Ozerskii A. Yu., “Assessment of potential pollution of the geological environment upon underground disposal of radioactive waste at the “Eniseiskii” site in the Nizhnekanskii mountain range (Krasnoyarsk region)”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, 2013, no. 6, 483–490
[24] Levin V. A., Nonlinear computational mechanics of strength, v. 1, Models and methods. Defect formation and growth, Fizmatlit, M., 2015 (Russian)