Modeling of thermal convection in porous media with volumetric heat source using the GeRa code
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 235-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the problem of thermal convection in porous media with volumetric heat generation modelling, arising in practice of radioactive waste (RW) disposal safety assessment. In the first section a brief overview of widespread hydrogeological codes (FEFLOW, SUTRA, SEAWAT, TOUGH2) featuring the ability to solve thermal problems is done. We point out the lack of heat generation caused by radioactive decay model in these programs. The GeRa numerical code developed by the authors is presented. In the second section we consider the mathematical model of coupled groundwater flow, solute and heat transport, which is implemented in GeRa. The model describes these processes in saturated porous media and takes into account radioactive decay, sorption on the rock, the dependences of density and viscosity on temperature. The heat transport equation is written assuming thermal equilibrium between the fluid and the rock. The model includes heat transport by convection and conduction-thermal dispersion. The heat source terms can be wells and volumetric heat generation due to radioactive decay. The numerical scheme implemented in GeRa to solve the aforementioned coupled problem is introduced in the third section. The space discretization is done using finite volume methods (FVM). Sequential iterative coupling implicit scheme is used for temporal discretization. On each iteration of the scheme the flow, heat transport and solute transport problems are solved sequentially. The fourth section is devoted to the test problem of heat generating fluid convection in a closed two-dimensional cavern filled by porous material with isothermal walls. The results obtained using GeRa code are compared to the asymptotical solution deduced by Haajizadeh. In the fifth section we present the results of modelling with GeRa the experiments of Buretta and Berman in which they investigated the regimes of free thermal convection of fluid with volumetric heat generation in porous media. The dependences of Nusselt number on the Raley number measured in the experiments and calculated numerically are compared. In the sixth section we consider the test problem of continuous injection of high-level RW into an aquifer. Here the ability to model coupled flow, heat and solute transport processes is shown. The numerical solution obtained using GeRa is compared to a known analytical one.
Keywords: numerical modeling, thermal convection in porous media, the GeRa code, volumetric heat source.
@article{CHEB_2017_18_3_a13,
     author = {F. V. Grigoriev and I. V. Kapyrin and Yu. V. Vassilevski},
     title = {Modeling of thermal convection in porous media with volumetric heat source using the {GeRa} code},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {235--254},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/}
}
TY  - JOUR
AU  - F. V. Grigoriev
AU  - I. V. Kapyrin
AU  - Yu. V. Vassilevski
TI  - Modeling of thermal convection in porous media with volumetric heat source using the GeRa code
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 235
EP  - 254
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/
LA  - ru
ID  - CHEB_2017_18_3_a13
ER  - 
%0 Journal Article
%A F. V. Grigoriev
%A I. V. Kapyrin
%A Yu. V. Vassilevski
%T Modeling of thermal convection in porous media with volumetric heat source using the GeRa code
%J Čebyševskij sbornik
%D 2017
%P 235-254
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/
%G ru
%F CHEB_2017_18_3_a13
F. V. Grigoriev; I. V. Kapyrin; Yu. V. Vassilevski. Modeling of thermal convection in porous media with volumetric heat source using the GeRa code. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 235-254. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a13/

[1] Diersh H.-J. G., FEFLOW — Finite element modeling of flow, mass and heat transport in porous and fractured media, Springer, Berlin–Heidelberg, 2014, xxxv+996 pp. | MR

[2] Voss C. I., A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport, U.S. Geological Survey Water-Resources Investigations Report 84-4369, 1984, 409 pp.

[3] Voss C. I., Provost A. M., SUTRA, A Model for Saturated-Unsaturated Variable-Density Ground-Water Flow with Solute or Energy Transport, Geological Survey Water-Resources Investigations Report 02-4231, 2002, 250 pp.

[4] Weatherhill D., Simmons C. T., Voss C. E., Robinson N. I., “Testing density-dependent ground-water models: two-dimensional steady state unstable convection in infinite, finite and inclined porous layers”, Advances in Water Resources, 27 (2004), 547–562 | DOI

[5] Ranganathan V., Hanor J. S., “Basin density-driven groundwater flow near salt domes”, Chem. Geol., 74 (1988), 173–188 | DOI

[6] Langevin C. D., Thorne D. T. (Jr.), Dausman A. M., Sukop M. C., Guo Weixing, SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport, U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, 2007, 39 pp.

[7] Pruess K., Oldenburg C., Moridis G., TOUGH2 User's Guide, ver. 2.0, Lawrence Berkeley National Laboratory, 1999

[8] Kapyrin I. V., Ivanov V. A., Kopytov G. V., Utkin S. S., “Integral code GeRa for RAW disposal safety validation”, Gornyi zhurnal, 2015, no. 10, 44–50

[9] Vassilevski Y. V., Konshin I. N., Kopytov G. V., Terekhov K. M., INMOST — a Software Platform and Graphical Environment for Development of Parallel Numerical Models on General Meshes, Izdatelstvo Moskovskogo Universiteta, M., 2013 (Russian)

[10] INMOST project page

[11] Diersh H.-J. G., Kolditz O., “Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems”, Advances in Water resources, 21 (1998), 401–425 | DOI

[12] Kimel L. R., Mashkovich V. P., Protection against ionizing radiation, 2-nd ed., Atomizdat, M., 1972 (Russian)

[13] Nikitin K., Vassilevski Yu., “A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D”, Russian J. Numer. Anal. Math. Modelling, 25:4 (2010), 335–358 | DOI | MR | Zbl

[14] Haajizadeh M., Ozguc A. F., Tien C. L., “Natural convection in a vertical porous enclosure with internal heat generation”, Int. J. Heat Mass Transfer., 27:10 (1985), 1893–1902 | DOI

[15] Buretta R. J., Berman A. S., “Convective heat transfer in a liquid saturated porous layer”, ASME J. Appl. Mech., 43 (1976), 249–253 | DOI

[16] Hardee H. C., Nilson R. H., “Natural convection in porous media with heat generation”, Nucl. Sci. Engng., 63 (1977), 119–132 | DOI

[17] Rhee S. J., Dhir V. K., Catton I., “Natural convection heat transfer in beds of inductively heated particles”, ASME J. Heat Transfer, 100 (1978), 78–85 | DOI

[18] Kulacki F. A., Freeman R. G., “A note on thermal convection in a saturated, heat generating porous layer”, ASME J. Heat Transfer, 101 (1979), 169–171 | DOI

[19] Nield D. A., Bejan A., Convection in Porous Media, 5th edition, Springer, 2017 | MR | Zbl

[20] Okounkov G. A., Rybalchenko A. I., Kuvaev A. A., “Thermal behaviour of geologic environment used for nuclear waste disposal”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, 2003, no. 3, 237–244

[21] Kirjuhin A. V., Kuvaev A. A., “Modeling of the test case of high-level radioactive waste injection in aquifer with radiogenic heat”, “Groundwater geology today and tomorrow” international scientific conference proceedings, MSU, M., 2013, 204–209

[22] Rybalchenko A. I., Pimenov M. K., Kostin P. P. et al., Deep geological liquid radioactive waste disposal, IzdAt, M., 1994

[23] Mal'kovskii V. I., Pek A. A., Kochkin B. T., Ozerskii A. Yu., “Assessment of potential pollution of the geological environment upon underground disposal of radioactive waste at the “Eniseiskii” site in the Nizhnekanskii mountain range (Krasnoyarsk region)”, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija, 2013, no. 6, 483–490

[24] Levin V. A., Nonlinear computational mechanics of strength, v. 1, Models and methods. Defect formation and growth, Fizmatlit, M., 2015 (Russian)