Keywords: linearization, tensor nonlinear functions, stress, strain rate, potential media, Bingham solid, Newtonian viscous fluid.
@article{CHEB_2017_18_3_a11,
author = {D. V. Georgievskii},
title = {Linearization of tensor nonlinear constitutive relations in the problems on stability of flows},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {202--209},
year = {2017},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a11/}
}
D. V. Georgievskii. Linearization of tensor nonlinear constitutive relations in the problems on stability of flows. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 202-209. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a11/
[1] Levin V.A., Nonlinear Computational Mechanics of Strength, v. 1, Formation and Development of Defects, Fizmatlit, M., 2015, 456 pp.
[2] Georgievskii D.V., “On the Orthogonal Effects of Stress-Strain State in Mechanics of Continuum”, Vestnik Kievskogo Nats. Univ. Ser. Fiziko-Matematich. Nauki, 2013, no. 3, 114–116 | Zbl
[3] Poynting J.H., “On the changes in the dimensions of a steel wire when twisted, and on the pressure of distorsional waves in steel”, Proc. Roy. Soc. London. Ser. A, 86 (1912), 534–561 | DOI | Zbl
[4] Green A.E., “A note on second-order effect in the torsion of incompressible cylinders”, Proc. Cambridge Philos. Soc., 50:3 (1954), 488–490 | DOI | MR | Zbl
[5] Chen M., Chen Z., “Second-order effect of an elastic circular shaft during torsion”, Appl. Math. Mech., 12:6 (1991), 769–776
[6] Chaboche J.L., “Modeling of ratcheting: evaluation of various approaches”, Europ. J. Mech. Ser. A. Solids, 13:4 (1994), 501–518
[7] Delobelle P., Robinet P., Bocher L., “Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel”, Internat. J. Plasticity, 11:4 (1995), 295–330 | DOI
[8] Batra R.C., dell'Isola F., Ruta G.C., “Generalized Poynting effects in prismatic bars”, J. Elasticity, 50:2 (1998), 181–196 | DOI | MR | Zbl
[9] Akinola A., “An energy function for transversely-isotropic elastic material and the Poynting effect”, Korean J. Comput. Appl. Math., 6:3 (1999), 639–649 | MR | Zbl
[10] Rivlin R.S., Ericksen J.L., “Stress-deformation relations for isotropic materials”, J. Rational Mech. Anal., 4:2 (1955), 323–425 | MR | Zbl
[11] Pobedria B.E., Lectures on Tensor Analysis, Moscow State University Ed., M., 1986, 263 pp.
[12] Bell J. F., Mechanics of Solids, v. I, The Experimental Foundations of Solid Mechanics, Springer, Berlin, 1973 | MR
[13] Georgievskii D.V., Müller W.H., Abali B.E, “Establishing experiments for obtaining of the material functions in tensor nonlinear constitutive relations”, Izvestiya RAN. Ser. fizich., 76:12 (2012), 1534–1537
[14] Georgievskii D.V., “Establishing experiments in tensor nonlinear theories of continuum mechanics”, Vestnik Moskovskogo Univ. Ser. 1. Matematika, mekhanika, 2016, no. 2, 66–68
[15] Georgievskii D.V., Stability of Viscoplastic Solids Deformation Processes, URSS, M., 1998