Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_2_a17, author = {Yu. N. Shteinikov}, title = {Character sums over shifted powers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {267--274}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a17/} }
Yu. N. Shteinikov. Character sums over shifted powers. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a17/
[1] Hong Bing Yu, “Estimates of character sums with exponential function”, Acta Arithmetica, 97:3 (2001), 211–218 | DOI | MR | Zbl
[2] M. Z. Garaev, “On the logarithmic factor in error term estimates in certain additive congruence problems”, Acta Arith., 124 (2006), 27–39 | DOI | MR | Zbl
[3] L. Goldmakher, “Multiplicative mimicry and improvements of the Pólya–Vinogradov inequality”, Algebra and Number Theory, 6:1 (2012), 123–163 | DOI | MR | Zbl
[4] C. Dartyge, A. Sárközy, “On additive decompositions of the set of primitive roots modulo $p$”, Monatsh. Math., 169 (2013), 317–328 | DOI | MR | Zbl
[5] K. Gong, C. Jia, M.A. Korolev, “Shifted character sums with multiplicative coefficients, II”, J. Number Theory, 178 (2017), 31–39 | DOI | MR | Zbl
[6] D.A. Frolenkov, “A numerically explicit version of the Polya–Vinogradov inequality”, Moscow journal of Combinatorics and Number Theory, 1:3 (2011), 25–41 | MR | Zbl
[7] D. A. Frolenkov, K. Soundararajan, “A generalization of the Pólya–Vinogradov inequality”, Ramanujan J., 31:3 (2013), 271–279 | DOI | MR | Zbl
[8] C. Pomerance, “Remarks on the Polya–Vinogradov inequality”, IMRN, 151 (2011), 30–41 | MR
[9] E. Dobrowolski, K. S. Williams, “An upper bound for the sum $\sum_{n=a+1}^{a+H}f(n) $for a certain class of funktions $f$”, Proccedings of the American Mathematical Society, 114:1 (1992), 29–35 | MR | Zbl
[10] I. M. Vinogradov, “A new improvement of the method of estimation of double sums”, Doklady Akad. Nauk SSSR (N.S), 73 (1950), 635–638 (Russian) | MR | Zbl
[11] A. Granville, K. Soundararajan, “Large character sums: pretentious characters and the Polya–Vinogradov theorem”, J. Amer. Math. Soc. (N.S), 20 (2007), 357–384 | DOI | MR | Zbl
[12] G. Bachman, L. Rachakonda, “On a problem of Dobrowolski and Williams and the Polya–Vinogradov inequality”, Ramanujan J., 5 (2001), 65–71 | DOI | MR | Zbl
[13] I. M. Vinogradov, Basics of number theory, Gostechizdat, 1952, 180 pp. | MR
[14] A. A. Karatsuba, Basics of analytic number theory, URSS, 2004, 182 pp. | MR
[15] T. Tao, V. Vu, Additive combinatorics, Cambridge University Press, 2006, 1530 pp. | MR | Zbl