On homogeneous mappings of mixed modules
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 256-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study mixed modules, with the following property: every homogeneous function of several variables of a module is additive. By a homogeneous function we mean any mapping of the direct sum of a finite number of copies of a module into the module itself that commutes with the endomorphisms of the given module. In the universal algebra, the algebraic structure is said to be endoprimal if all its term-functions commute with endomorphisms. It is well-known that each endodualizable finite algebra is endoprimal. Some authors have studied endoprimal algebras in varieties of vector spaces, semilattices, Boolean algebras, Stone algebras, Heyting algebras, and Abelian groups. In this article, the links between endoprimality and the properties of the multiplicative semigroup of the endomorphism ring of a module, which the author started earlier. Classes of mixed non-reduced splitting modules and reduced modules over commutative Dedekind ring have been investigated. Links between this problem and the property of unique additivity has been shown. Bibliography: 26 titles.
Keywords: Dedekind ring, divisible module, reduced module, mixed module, homogeneous map, term-function, endofunction.
@article{CHEB_2017_18_2_a16,
     author = {D. S. Chistyakov},
     title = {On homogeneous mappings of mixed modules},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {256--266},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a16/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - On homogeneous mappings of mixed modules
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 256
EP  - 266
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a16/
LA  - ru
ID  - CHEB_2017_18_2_a16
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T On homogeneous mappings of mixed modules
%J Čebyševskij sbornik
%D 2017
%P 256-266
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a16/
%G ru
%F CHEB_2017_18_2_a16
D. S. Chistyakov. On homogeneous mappings of mixed modules. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 256-266. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a16/

[1] K. Kaarli, L. Marki, “Endoprimal Abelian groups”, Jour. Austral. Math. Soc., 67 (1999), 412–428 | DOI | MR | Zbl

[2] K. Kaarli, L. Marki, “Endoprimal Abelian groups of torsion-free rank 1”, Rend. Sem. Mat. Univ. Padova, 112 (2004), 117–130 | MR | Zbl

[3] R. Gobel, K. Kaarli, L. Marki, S. Wallutis, “Endoprimal torsion-free separable groups”, Jour. of Alg. and Its Appl., 3 (2004), 61–73 | DOI | MR | Zbl

[4] U. Albrecht, S. Breaz, W. Wickless, “Generalized endoprimal abelian groups”, Jour. of Alg. and Its Appl., 5 (2006), 1–17 | DOI | MR | Zbl

[5] B.A. Davey, “Dualisability in general and endodualisability in particular”, Logic and Algebra, Lecture Notes in Pure and Appl. Math., 180, 1996, 437–455 | MR | Zbl

[6] B.A. Davey, J.G. Pitkethly, “Endoprimal algebras”, Algebra Universalis, 38 (1997), 266–288 | DOI | MR | Zbl

[7] D.S. Chistyakov, “Separabelnye moduli bez krucheniya s UA-koltsami endomorfizmov”, Izv. vuzov. Matematika, 2015, no. 6, 53–59

[8] D.S. Chistyakov, “Abelevy gruppy kak UA-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91 (2012), 878–884 | DOI | Zbl

[9] O.V. Lyubimtsev, D.S. Chistyakov, “Ob abelevykh gruppakh bez krucheniya s UA-koltsom endomorfizmov”, Vestnik Tomskogo gos. univer., 2011, no. 2(14), 55–58

[10] O.V. Lyubimtsev, D.S. Chistyakov, “UA-svoistva modulei nad kommutativnymi neterovymi koltsami”, Izv. vuzov. Matem., 2016, no. 11, 42–52

[11] R.E. Johnson, “Rings with unique addition”, Proc. Amer. Math. Soc., 9 (1958), 55–61 | DOI | MR

[12] W.S. Martindale, III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969), 695–698 | DOI | MR | Zbl

[13] A.V. Mikhalev, “The multiplicative classification of associative rings”, Math. Sb., 135(177) (1988), 210–224 | MR | Zbl

[14] Chr.-F. Nelius, Ringe mit eindentinger Addition, Paderborn, 1974

[15] C.E. Rickart, “One-to-one mappings of rings and lattices”, Bull. Amer. Math. Soc., 54 (1948), 758–764 | DOI | MR | Zbl

[16] W. Stephenson, “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl

[17] I.I. Artamonova, “On uniqueness of addition in semirings”, Fundam. Prikl. Mat., 3 (1997), 1093–1100 (in Russian) | MR | Zbl

[18] I.V. Arzhantsev, “Uniqueness of addition in semisimple Lie algebras”, Russian Math. Surveys, 56 (2001), 569–571 | DOI | MR | Zbl

[19] A.B. van der Merwe, “Unique addition modules”, Comm. in Alg., 27 (1999), 4103–4115 | DOI | MR | Zbl

[20] O.V. Lyubimtsev, D.S. Chistyakov, “Moduli bez krucheniya s UA-koltsami endomorfimov”, Matem. zametki, 98 (2015), 898–906 | DOI | Zbl

[21] O.V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s UA-koltsami endomorfizmov”, Fund. i prikl. matematika, 4 (1998), 1419–1422 | Zbl

[22] O.V. Lyubimtsev, “Periodicheskie abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 70 (2001), 736–741 | DOI | Zbl

[23] O.V. Lyubimtsev, “Vpolne razlozhimye faktorno delimye abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 98 (2015), 125–133 | DOI

[24] O.V. Lyubimtsev, “Algebraicheski kompaktnye abelevy gruppy s UA-koltsami endomorfimov”, Fund. i prikl. matematika, 20 (2015), 121–129

[25] O.V. Lyubimtsev, D.S. Chistyakov, “Smeshannye abelevy gruppy s izomorfnymi polugruppami endomorfizmov”, Matem. zametki, 97 (2015), 556–565 | DOI | Zbl

[26] P.A. Krylov, A.A. Tuganbaev, Moduli nad oblastyami diskretnogo normirovaniya, Faktorial Press, M., 2007