$E$-rings of low ranks
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 235-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

An associative ring $R$ is called an $E$-ring if all endomorphisms of its additive group $R^+$ are left multiplications, that is, for any $\alpha\in\mathrm{End}\,R^+$ there is $r\in R$ such that $\alpha(x)=x\cdot r$ for all $x\in R$. $E$-rings were introduced in 1973 by P. Schultz. A lot of articles are devoted to $E$-rings. But most of them are considered torsion free $E$-rings. In this work we consider $E$-rings (including mixed rings) whose ranks do not exceed $2$. It is well known that an $E$-ring of rank $0$ is exactly a ring classes of residues. It is proved that $E$-rings of rank 1 coincide with infinite $T$-ring (with rings $R_\chi$). The main result of the paper is the description of $E$-rings of rank $2$. Namely, it is proved that an $E$-ring $R$ of rank $2$ or decomposes into a direct sum of $E$-rings of rank $1$, or $R=\mathbb{Z}_m\oplus J$, where $J$ is an $m$-divisible torsion free $E$-ring, or ring $R$ is $S$-pure embedded in the ring $\prod\limits_{p\in S}t_p(R)$. In addition, we obtain some results about nilradical of a mixed $E$-ring. Bibliography: 15 titles.
Keywords: $E$-ring, $E$-group, abelian group, $T$-ring, quotient divisible group.
@article{CHEB_2017_18_2_a14,
     author = {A. V. Tsarev},
     title = {$E$-rings of low ranks},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/}
}
TY  - JOUR
AU  - A. V. Tsarev
TI  - $E$-rings of low ranks
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 235
EP  - 244
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/
LA  - ru
ID  - CHEB_2017_18_2_a14
ER  - 
%0 Journal Article
%A A. V. Tsarev
%T $E$-rings of low ranks
%J Čebyševskij sbornik
%D 2017
%P 235-244
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/
%G ru
%F CHEB_2017_18_2_a14
A. V. Tsarev. $E$-rings of low ranks. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 235-244. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/

[1] Schultz P., “Periodic homomorphism sequences of abelian groups”, Arch. Math., 21 (1970), 132–135 | DOI | MR | Zbl

[2] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austral. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl

[3] Fuchs L., Abelian groups, Publ. House of the Hungar. Acad. Sci., Budapest, 1958 | MR

[4] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl

[5] Göbel R., Shelah S., Strüngmann L., Generalized $E$-Rings, 2003, arXiv: math/0404271 [math.LO]

[6] Fuchs L., Infinite abelian groups, v. 1, Academic press, 1970 ; v. 2, 1973 | MR | Zbl

[7] Vinsonhaler C., “$E$-rings and related structures”, Non-noethereian commutative ring theory, Math. Apl., 520, Kluwer, Dordrecht, 2002, 387–402 | MR

[8] Szele T., Szendrei J., “On abelian groups with commutative endomorphism ring”, Acta Mathematica Hungarica, 2:3 (1951), 309–324 | DOI | MR | Zbl

[9] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism rings of Abelian groups, v. 2, Springer Science Business Media, 2013 | MR

[10] Fomin A. A., “To Quotient Divisible Group Theory. I”, Journal of Mathematical Sciences (New York), 197:5 (2014), 688–697 | DOI | MR | Zbl

[11] Fomin A. A., “To Quotient Divisible Group Theory. II”, Fundamentalnaya i prikladnaya matematika, 20:5 (2015), 157–196

[12] Davydova O. I., “Rank-1 quotient divisible groups”, J. Math. Sci., 154:3 (2008), 295–300 | DOI | MR | Zbl | Zbl

[13] Tsarev A. V., “$T$-rings and rank-1 quotient divisible groups”, Vestnik TGU, 2013, no. 4(24), 50–53

[14] Tsarev A. V., “$T$-rings”, Fundamentalnaya i prikladnaya matematika, 20:5 (2015), 203–207

[15] Beaumont R., Pierce R., “Torsion free rings”, Ill. J. Math., 5 (1961), 6–98 | MR