$E$-rings of low ranks
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 235-244

Voir la notice de l'article provenant de la source Math-Net.Ru

An associative ring $R$ is called an $E$-ring if all endomorphisms of its additive group $R^+$ are left multiplications, that is, for any $\alpha\in\mathrm{End}\,R^+$ there is $r\in R$ such that $\alpha(x)=x\cdot r$ for all $x\in R$. $E$-rings were introduced in 1973 by P. Schultz. A lot of articles are devoted to $E$-rings. But most of them are considered torsion free $E$-rings. In this work we consider $E$-rings (including mixed rings) whose ranks do not exceed $2$. It is well known that an $E$-ring of rank $0$ is exactly a ring classes of residues. It is proved that $E$-rings of rank 1 coincide with infinite $T$-ring (with rings $R_\chi$). The main result of the paper is the description of $E$-rings of rank $2$. Namely, it is proved that an $E$-ring $R$ of rank $2$ or decomposes into a direct sum of $E$-rings of rank $1$, or $R=\mathbb{Z}_m\oplus J$, where $J$ is an $m$-divisible torsion free $E$-ring, or ring $R$ is $S$-pure embedded in the ring $\prod\limits_{p\in S}t_p(R)$. In addition, we obtain some results about nilradical of a mixed $E$-ring. Bibliography: 15 titles.
Keywords: $E$-ring, $E$-group, abelian group, $T$-ring, quotient divisible group.
@article{CHEB_2017_18_2_a14,
     author = {A. V. Tsarev},
     title = {$E$-rings of low ranks},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/}
}
TY  - JOUR
AU  - A. V. Tsarev
TI  - $E$-rings of low ranks
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 235
EP  - 244
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/
LA  - ru
ID  - CHEB_2017_18_2_a14
ER  - 
%0 Journal Article
%A A. V. Tsarev
%T $E$-rings of low ranks
%J Čebyševskij sbornik
%D 2017
%P 235-244
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/
%G ru
%F CHEB_2017_18_2_a14
A. V. Tsarev. $E$-rings of low ranks. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 235-244. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a14/