Two-sided estimates of gamma-function on the real semiaxis
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 205-221

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present new two-sided estimates of gamma-function $\Gamma(x+1)$ on the real semiaxis $x>0$. Based on this result, we improve well-known estimates for the factorial $n!$, which hold for all $n \geq 1$. Some of obtained estimates of gamma-function $\Gamma(x+1)$ hold only for $x \geq 1/2$ and some only for $x \geq 1$. The main estimates are connected to the notion of alternation round of a function by asymptotic series in the strong sense. However such a strong alternation is proved only for several partial sums. We have a conjecture that the asymptotic series alternates round a logarithm of gamma-function in strong sense. Similary we propose new inequalities for the number of $n$-combination from $2n$. These considerations indicate that next investigation is promissing and give a method for construction of new two-sided estimates for functions having alternating asymptotic series. Bibliography: 15 titles.
Keywords: gamma-function, two-sided estimates, asymptotic behavior.
@article{CHEB_2017_18_2_a12,
     author = {A. Yu. Popov},
     title = {Two-sided estimates of gamma-function on the real semiaxis},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {205--221},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Two-sided estimates of gamma-function on the real semiaxis
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 205
EP  - 221
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/
LA  - ru
ID  - CHEB_2017_18_2_a12
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Two-sided estimates of gamma-function on the real semiaxis
%J Čebyševskij sbornik
%D 2017
%P 205-221
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/
%G ru
%F CHEB_2017_18_2_a12
A. Yu. Popov. Two-sided estimates of gamma-function on the real semiaxis. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/