Two-sided estimates of gamma-function on the real semiaxis
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 205-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present new two-sided estimates of gamma-function $\Gamma(x+1)$ on the real semiaxis $x>0$. Based on this result, we improve well-known estimates for the factorial $n!$, which hold for all $n \geq 1$. Some of obtained estimates of gamma-function $\Gamma(x+1)$ hold only for $x \geq 1/2$ and some only for $x \geq 1$. The main estimates are connected to the notion of alternation round of a function by asymptotic series in the strong sense. However such a strong alternation is proved only for several partial sums. We have a conjecture that the asymptotic series alternates round a logarithm of gamma-function in strong sense. Similary we propose new inequalities for the number of $n$-combination from $2n$. These considerations indicate that next investigation is promissing and give a method for construction of new two-sided estimates for functions having alternating asymptotic series. Bibliography: 15 titles.
Keywords: gamma-function, two-sided estimates, asymptotic behavior.
@article{CHEB_2017_18_2_a12,
     author = {A. Yu. Popov},
     title = {Two-sided estimates of gamma-function on the real semiaxis},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {205--221},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Two-sided estimates of gamma-function on the real semiaxis
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 205
EP  - 221
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/
LA  - ru
ID  - CHEB_2017_18_2_a12
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Two-sided estimates of gamma-function on the real semiaxis
%J Čebyševskij sbornik
%D 2017
%P 205-221
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/
%G ru
%F CHEB_2017_18_2_a12
A. Yu. Popov. Two-sided estimates of gamma-function on the real semiaxis. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a12/

[1] Whittaker E. T., Watson G. N., A Course of Modern Analysis, v. 2, 4th ed., Cambridge University Press, Cambridge, 1927, 616 pp. | MR | Zbl

[2] Gelfond A. O., Calculus of Finite Differences, Nauka, M., 1967, 432 pp.

[3] Lang S., Elliptic functions, Addison-Wesley publishing company, Inc, London–Amsterdam–Dod Mills–Ontario–Sydney–Tokio, 1973, 326 pp. | Zbl

[4] Machis Yu. Yu., “About Stirling's formula”, Liet. Matem. Rink., 47, spec. nr. (2007), 526–530

[5] Robbins N., “A remark on Stirling's formula”, The American mathematical monthly, 62:1 (1955), 26–29 | DOI | MR | Zbl

[6] Sonin N., “Sur les termes complementaires de la formule sommatoire d'Euler et de celle de Stirling”, Annales de l'Ecol norm., ser 3, 6 (1889), 257–262 | MR

[7] Sonin N. Ya., Investigations of cylinder functions and special polynomials, GITTL, M., 1954, 244 pp.

[8] Kupcov L. P., “Gamma-function”, Sovetskaya ehnciklopediya, v. 1, M., 1977, 866–870 pp.

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, v. 1, Nauka, M., 1981, 800 pp.

[10] Fedoryuk M. V., “Wrapping series”, Sovetskaya ehnciklopediya, v. 3, M., 1982, 1096

[11] Hardy G. H., Divergent Series, Oxford Univ. Press, Oxford, 1949, 396 pp. | MR | Zbl

[12] Polya G., Szego G., Aufgaben und Lehrsatze aus der Analysis I, Reihen. Integralrechnung. Funktionentheorie, Springer, Berlin, 1925, 338 pp. | MR | Zbl

[13] Ahiezer N. I., Elements of the theory of elliptic functions, 2nd ed., Nauka, M., 1970, 304 pp.

[14] Belov A. S., “An estimate of the remainder term in the asymptotic solution of an extremal problem connected with nonnegative trigonometric polynomials”, Mat. notes, 100:2 (2016), 303–307 | DOI | Zbl

[15] Tihonov I. V., Sherstyukov V. B., Petrosova M. A., “Bernstein polynomials: old and new”, Studies in mathematical analysis, v. 1, Mathematical forum, 8, Vladikavkaz, 2014, 126–175