Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_2_a1, author = {D. Yu. Artemov}, title = {About ring structures on the set of integers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {6--17}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a1/} }
D. Yu. Artemov. About ring structures on the set of integers. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 6-17. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a1/
[1] Fuchs L., Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl
[2] Fuchs L., Infinite Abelian Groups, v. 2, Academic Press, New York–London, 1973 | MR | Zbl
[3] Kurosh A. G., General Algebra, Nauka, M., 1974 (russian)
[4] Schultz P., “Periodic homomorphism sequences of abelian groups”, Arch. Math., 21 (1970), 132–135 | DOI | MR | Zbl
[5] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austral. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl
[6] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl
[7] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism rings of Abelian groups, v. 2, Springer Science Business Media, 2013 | MR
[8] Feigelstock S., Additive groups of rings, Pitman advanced publishing program, London, 1983 | MR
[9] Arnold D. M., Finite rank torsion free abelian groups and rings, Lecture Notes in Math., 931, Springer, New York, 1982 | DOI | MR | Zbl
[10] Stephenson W., “Unique addition rings”, Canad. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl
[11] Nelius Chr.-F., Ring emit eindentiger Addition, Paderborn, 1974
[12] Mikhalev A. V., “Multiplicative classification of associative rings”, Mathematics of the USSR-Sbornik, 63:1 (1989), 205–218 | DOI | MR | Zbl | Zbl
[13] van der Merwe B., “Unique addition modules”, Communications in algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl
[14] Chistyakov D. S., Lyubimtsev O. V., “On abelian torsion free with UA-endomorphism rings”, Vestnik TGU, 2011, no. 2(14), 55–58
[15] Chistyakov D. S., Lyubimtsev O. V., “Abelian groups as UA-modules over the ring $\mathbb{Z}$”, Mathematical Notes, 87:3 (2010), 380–383 | DOI | MR | Zbl