Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_1_a7, author = {A. I. Kozko}, title = {On some convergence tests for alternating series and constant sign series}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {123--133}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a7/} }
A. I. Kozko. On some convergence tests for alternating series and constant sign series. Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a7/
[1] Ilyin V. A., Sadovnichii V. A., Sendov Bl. H., Mathematical Analysis, v. 1, Izdatelstvo MSU, M., 1985, 662 pp.; v. 2, 1987, 358 pp.
[2] Nikolskii S. M., Course of mathematical analysis, Fizmatlit, M., 2001, 592 pp.
[3] Shvedov I. A., Kompaktnyi kurs matematicheskogo analiza, v. 1, Novosib. Gos. Univ., 2003, 112 pp.
[4] Zorich V. A., Matematicheskii analiz, v 2-kh chastyakh, izd. 4-e, MTsNMO, 2002; Zorich V. A., Mathematical Analysis, v. I, Springer, 2015 ; Mathematical Analysis, v. II, 2016 | MR | Zbl
[5] Kozko A. I., “Asymptotics of the spectrum of the differential operator $-y''+q(x)y$ with a Boundary Condition at zero and with rapidly growing potential”, Differential Equations, 41:5 (2005), 636–648 | DOI | MR | Zbl
[6] Kozko A. I., “The properties of the eigenvalues of Sturm-Liouville in $L^2(\mathbb{R}_+)$ with boundary condition $y(0)\cos \alpha +y'(0) \sin \alpha =0$”, Sovremennye problemy teorii funkchii i ih prilozeniya, Sbornik 18 Mezdunarodnoi Saratovskoi zimnei shkolu (27 january–03 february 2016), Izdatelstvo SGU, Saratov, 2016, 150–152
[7] Pechentsov A. S., “Regularized traces of differential operators: the Lidskii–Sadovnichii method”, Differential Equations, 35:4 (1999), 490–497 | Zbl
[8] Kozko A. I., Pechentsov A. S., “Regularized traces of singular differential operators with canonical boundary conditions”, Moscow Univ. Math. Bulletin, 2011, no. 4, 11–17
[9] Kozko A. I., Pechentsov A. S., “Regularized traces of higher-order singular differential operators”, Mathematical Notes, 83:1 (2008), 37 | DOI | DOI | MR | Zbl
[10] Sadovnichii V. A., Pechentsov A. S., Kozko A. I., “Regularized traces of singular differential operators”, Doklady Mathematics, 80:1 (2009), 550–554 | DOI | MR | Zbl
[11] Kozko A. I., Pechentsov A. S., “Spectral functions and regularized traces of singular differential operators of higher orders”, Doklady Mathematics, 71:2 (2005), 195–197 | MR | Zbl
[12] Kozko A. I., On the spectral functions for the higher-order differential operators with trivial boundary conditions and regularized trace of perturbation operators of the first order, Laboratoire de Mathematiques, Universite Blaise Pascal–Clermont-Ferrand, France, 2004, 22
[13] Kozko A. I., Pechentsov A. S., “On the spectral function and regularized traces of singular differential operators”, m-Function and Related Topics Conference, International conference, dedicated to professor W. N. Everitt (Cardiff, Wales, Uk, July 19–21, 2004), 14–16
[14] Kozko A. I., Pechentsov A. S., “Regularized traces of singular differential operators of higher orders”, IWOTA 2004 (Newcastle upon Tyne, Uk, July 12–16), 31
[15] Kozko A. I., Pechentsov A. S., “The spectral function of a singular differential operator of order $2m$”, Izvestiya: Mathematics, 74:6 (2010), 1205–1224 | DOI | DOI | MR | Zbl
[16] Pechentsov A. S., “Regularized traces of boundary problems in case of multiple roots of characteristic polynomial”, Fundamentalnaya i prikladnaya matematika, 4:2 (1998), 567–583 | Zbl
[17] Kadchenko S. I., “Method of regularized traces”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming and computer software, 37(170):4 (2009), 4–23
[18] Raspopov V. V., Dubrovskii V. V., “An approximate regularized trace formula for an ordinary fourth-order differential operator”, Differential Equations, 38:7 (2002), 1042–1045 | DOI | MR | Zbl
[19] Bobrov A. N., Podol'skii V. E., “Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$”, Sbornik: Mathematics, 190:10 (1999), 1401–1415 | DOI | DOI | MR | Zbl
[20] Sadovnichii V. A., Podolskii V. E., “Regularized traces of discrete operators”, Proceedings of the Steklov Institute of Mathematics, 255:2, Supplementary issues (2006), 161–177 | MR | Zbl
[21] Sadovnichii V. A., Podolskii V. E., “Traces of operators”, Uspekhi Mat. Nauk, 61:5(371) (2006), 89–156 | DOI | Zbl